Generating Tree Inputs for Testing using
Evolutionary Computation Techniques

David Grifan
Universidad Complutense de Madrid
Madrid, Spain
david.grinan.martinez@gmail.com

Abstract—Software Testing usually considers programs with
parameters ranging over simple types. However, there are many
programs using structured types. The main problem to test these
programs is that it is not easy to select a relatively small test suite
that can find most of the faults in these programs. In this paper
we present a framework to generate test suites for unit testing of
methods which have trees as parameters. We combine classical
mutation testing with Evolutionary Computation techniques to
evolve a population of trees. The final goal is to obtain a set of
trees, representing good test cases, that will be used as the test
suite to test the corresponding method.

Index Terms—Software Testing, Evolutionary Computation,
Mutation Testing

I. INTRODUCTION

Software testing [1] is the main validation technique to as-
sess the reliability of complex software systems. In particular,
testing is used to validate single methods using unit testing
techniques. Essentially, testing consists in selecting values
for the parameters of the method that we are testing, call
this method with these values, observe the returned values,
and evaluate whether the returned values correspond to the
expected ones. This simple description hides many issues that
strongly complicate testing. First, we usually do not have an
automatic procedure to check that the produced values are as
expected (this is the well-known oracle problem [3], [32]).
Second, and this is the topic of this paper, selecting values
is not trivial because, in principle, not all the values have the
same power to find faults. This task is much more difficult
if we have to generate test cases for parameters ranging over
structured types (e.g. tree-like structures as the ones considered
in this paper). The main goal of this paper is to present a novel
approach to generate test cases for unit testing of methods
with structured type parameters, in particular, tree-like types.
Note that lineal structures (such as queues and stacks) are a
particular case of tree-like structures. Also note that there are
better approaches for unit testing of methods with elementary
type parameters.

In order to evaluate the usefulness of our approach, we
use a mutation testing [8], [20], [26], [37] approach. We
introduce small variations in the original program under test,
called mutants, and apply a test suite to kill them. That

This work has been supported by the Spanish MINECO-FEDER (grant
number FAME, RTI12018-093608-B-C31) and the Region of Madrid (grant
number FORTE-CM, S2018/TCS-4314).

Alfredo Ibias
Universidad Complutense de Madrid
Madrid, Spain
aibias@ucm.es

is, observe results in the mutants different to the ones in
the original program. The assumption is that a set of tests
killing all mutants (or at least most, after removing equivalent
mutants [28]) will be able to find most of the faults in the
program under test. We will use mutation testing to compute
the fitness function of our algorithm: the higher the number of
killed mutants, the higher the fitness value will be.

Heuristic search algorithms are techniques commonly used
in Mathematics and Computer Science either to optimise a
function or to find the best possible solution for a given
problem. These techniques, also referred to as metaheuristics,
can be roughly divided into three categories: global search
techniques such as simulated annealing [29], where only one
solution is considered at each step; evolutive techniques such
as genetic algorithms [14], which handle a population of
candidate solutions at each step; and constructive techniques
such as Ant Colony Optimisation [13], which start with an
empty solution and progressively build upon it until achieving
a solution for the problem.

In this paper we have used an Evolutionary Computation
technique to generate test suites. We have chosen this par-
ticular family of techniques because it is well suited for
parallel searching and it also combines the knowledge obtained
by each member of the population of candidate solutions.
Furthermore, by starting with a random set of candidate
solutions, the algorithm can quickly obtain a candidate solution
that suits our goal. More specifically, we have implemented
a variation of a typical Evolutionary approach: the Particle
Swarm Optimisation (PSO) algorithm [27]. This variation is
the Tree Swarm Optimisation (TSO) algorithm [16]. The main
advantage of this model is that it allows us to work with trees
as the particles of the search space. Evolutionary algorithms
like the one used in this paper are particularly useful to develop
complex solutions in a more efficient way. Traditionally, a test
suite is generated by a domain expert, which means that this
task is complex and might take away a big percentage of a
project’s budget. To work around this issue, a heuristic search
using evolutionary algorithms represents a powerful strategy
that can cut in both time and costs. Finally, we would like to
mention that the use of metaheuristics in testing is not new [2],
[4], [9], [10], [19], [24]. In particular, there is some work on
the application of the swarm idea to testing [17], [40]. The
novelty of our approach resides in the fact that we are able to

produce test suites for methods having tree-like structures as
parameters, that are good test suites to detect faults.

The rest of the paper is organised as follows. In Section II
we present some theoretical concepts that we will use along
our paper. In Section III we introduce our testing framework.
In Section IV we present our experiments and discuss the
results. In Section V we review some of the possible threats
to the validity of our results. Finally, in Section VI we give
the conclusions and outline some directions for future work.

II. PRELIMINARIES

In this section we briefly introduce the concepts that will
be used along the work. First, we will define the concepts of
(directed) graph and tree.

Definition 1: A directed graph is a pair (V, E) where V is
a set of vertices (or nodes) and ¥ C V' x V is a set of edges
(or arcs). We say that a graph G = (V, E) is acyclic if it
does not have cycles, that is, there does not exist a non-empty
sequence of edges (vo,v1), (v1,v2),..., (Un,Vny1) € E such
that vg = v,11. Let v,v" € V be vertices. We say that v’
is reachable from v if there exists a non-empty sequence of
transitions (v,v1), (v1,v2),..., (v,,v") € E.

A tree is a pair (G,r) where r € V is the roor node and
G = (V, E) is a directed acyclic graph such that for all nodes
v € V\{r} we have that v is reachable from r.

A connected component of a graph (V, E) is a graph G, =
(Ve, E.), with V., C V and E. C E, such that the following
two conditions hold:

o There exists v € V. such that for all v € V.\{v}, we
have that v’ is reachable from v. If the graph is acyclic
then we may consider that v is the root of the induced
tree.

 For all v' ¢ V. we have that there does not exist v” € V.
such that either v’ is reachable from v" or v is reachable
from v’.

In order to simplify the framework, in this paper we consider
the testing of methods that receive a single tree as an input.
Note that additional parameters over simple types would be
treated using standard software testing techniques. In addition,
having several tree-like parameters would be the result of
jointly applying the framework presented in this paper to all
the parameters. In fact, our restriction does not represent a
strong constraint from the theoretical point of view and can
be easily overcome in its practical applications. Therefore, we
need to generate test cases that consist of a single tree as input.
In order to have more than one test, we need to produce test
suites, which are a collection of tests. For this task, we recall
the concept of forest.

Definition 2: A forest is an undirected graph F = (V, E)
where each connected component is a tree.

We will identify trees with test cases and forests with test
suites. It is important to remark that some data structures (as
lists, queues and stacks) can be seen as a special case of trees.
Therefore, we will talk about trees in a mathematical way,
as defined before, although the implementations can differ for
each case.

In order to construct a test suite where each of the test cases
corresponds to a tree that will be used as a parameter to call the
method, we will use an Evolutionary model: a tree generation
heuristic based on the Particle Swarm Optimisation (PSO)
algorithm, the Tree Swarm Optimisation (TSO) algorithm [16].
Similarly to an evolutionary computation algorithm, we evolve
a set of individuals to traverse the search space looking for an
optimal solution. For each individual, we keep its best version
from all the configurations visited along the evolution process,
which in the first iteration will be itself. This information is
usually referred to as the memory of each individual or particle.
In order to perform the evolution process, we will also take
into account the best out of the memories of the particles,
which is the best individual seen by the population. These
components represent the communication between particles in
the population.

In a classical PSO algorithm, we start with an initial
population of individuals, each one represented by a vector,
and we obtain their fitness values. Then, the evolution loop
consists in updating each individual by adding a vector called
velocity. The velocity is defined as the following vector:

v; = vi—1 + av) - best, + B¢ - best

where best, is the difference between the individual and
the best version of it found along the algorithm; best is
the difference between the individual and the best individual
found along the algorithm, o and [are the user-specified
parameters for each memory, and ¢ and ¢ are randomisation
parameters. The update process is then performed by adding
up the velocity vector and the vector representing the particle.

However, we are working with structured types, in particular
tree-like types, and we have to adapt the original PSO algo-
rithm (that was developed to work with vectors of numbers)
to work with trees (or in our case, trees that represent forests,
as we will see later). In order to do so, first, we replace the
individuals by trees. Second, the update function, instead of
being a simple sum of values, will consist of two consecutive
crossovers for each individual of the population:

« a crossover between the best observed individual and the

best version of the individual, and

o another crossover between the result of the previous

crossover and the current version of the individual.

Essentially, each crossover takes the part of the trees where
they match and perform a random update of their different
parts. As discussed in [16], the crossover can be performed in
multiple ways, specially, using the crossover operators already
used in Genetic Programming. However, the only crossover
operator, already proposed, that keeps the inspiration of the
original PSO algorithm, is the one we defined before.

In Figure 1 we show a graphical representation of a
crossover. Consider the two trees in the upper part. The green
nodes denote the same information in both trees. When we
perform the crossover, we keep the green nodes but the rest
of the tree is replaced by a random tree.

There is an implementation detail that we would like to
mention. In this paper, we are focusing on the generation of

Fig. 1. Cross in the adapted PSO algorithm

test suites, that is, sets of trees. Therefore, it seems natural
to work with forests of trees (each tree representing a test
case). However, our variant of the PSO algorithm works only
with trees. Therefore, at the implementation level, we will
consider a special type of trees with a fake root such that it
has as children all the trees conforming the test suite. We will
elaborate on this issue later on.

Our goal behind the use of this approach, instead of a
classical Genetic Programming heuristic, is to take advantage
of the emergence property this algorithm presents. Thanks
to particles communicating amongst themselves, a final test
suite can be obtained as the result of individuals constantly
exchanging information. It also allows for a more in-depth
study of the population with respect to the steps the particles
have taken as they move from one element of the search space
to another.

III. TESTING FRAMEWORK

In this section we present our testing framework. Its main
goal is to generate good test suites for a given program/method
that receives trees as inputs. As we have already explained,
we decided to rely on evolutionary computation techniques
to compute these test suites. In order to have a good fitness
function for our evolutionary computation approach, we use
mutation testing as the main tool to evaluate the fitness of the
population that we are evolving.

Below, we briefly describe the main components of our
framework:

o An implementation. This is the system/unit that we are

testing (e.g. a method).

o A mutation tool. We need a tool to produce mutants.

o A tree generation heuristic. We need an algorithm to

generate and evolve trees with the goal of improving
a given fitness function. In our case, it is the TSO
algorithm.

Our framework consists of two steps: a mutant generation
step and a test suite generation step. A graphical representation
of our framework can be found in Figure 2.

In order to perform the mutant generation step, we follow
the usual approach in mutation testing in a white-box setting:
we pass our method/program to a mutant generation tool and
we produce a population of mutants. Therefore, the result of
this step will be a set of mutants of the method that will be
used in the next step to obtain the value of the fitness function.

In the test suite generation step we will use a tree generation
heuristic (in our case, an evolutionary computation technique)
to generate test suites conformed by trees. We work with trees
as population members (representing test cases) and our opti-
misation object is a forest (representing a test suite). However,
existing techniques consider trees as first-class citizens and,
therefore, we need to encode forests as trees. Each test suite
will be represented as a tree, where the root’s children will
be the roots of the trees that will be used as inputs for the
program. With this codification, we represent a forest in a
connected way so individuals now represent a set of trees
rather than just one tree. A graphical representation of this
structure is given in Figure 3.

The tree generation heuristic will use as fitness function the
amount of mutants killed by each test suite (or the percentage
of killed mutants with respect to the total number of mutants)
and will iterate in order to improve the test suite. This fitness
function will be used by the heuristic algorithm both to select
the best test suite and to measure how effective each of the
test suites is. It is important to note that we will not be able
to keep test suites that kill fewer mutants but that are the
only ones that kill those mutants, because we do not have this
information at execution time.

In order to know if a mutant is killed, we will confront
the result obtained by the mutant with the one obtained by
the original method: if they differ then the mutant is killed.
Note that we are considering strong mutation because we only
check the final result. Even though we are mainly interested
in a white-box testing framework, where we have access to
the code of the method that we are validating, the idea is
that we define a generic, as much as possible, framework that
can be used both in white-box and black-box testing. If we
consider a weak mutation approach, then we need to check
the intermediate states but they are usually not available if we
consider a black-box testing framework.

IV. EXPERIMENTS

In this section we report on some experiments that we
performed with the goal of evaluating the suitability of our
proposed framework. The schema of the experiments (graph-
ically presented in Figure 4) is very similar to our general
framework (see Figure 2). There is, however, a slight differ-
ence concerning the use of the available mutants. In order to
compute an appropriateness value for the obtained test suites,
we need to confront them against a set of mutants. However,
if we use the same sets of mutants that we used to produce the
test suite, then there is the obvious risk of overfitting. In order
to overcome this limitation, we adapted a classical machine
learning technique to our setting: cross-validation [39].

M1
1 Mutant Generatior, Method Give Method GMuta:_t Produce Mutants R M2
Step Start > P Generation >
Tool
Mn
A
Get Fitness
Kill
Mutants TBest
A
T1
T2
Test Suite Generation Create Initial Tree
2 - ; » G tion Not Enough o
Step Start 71 Population »| Generatl Fithess »
Heuristic
Tm
Enough Fitness Get Best Forest

Fig. 2. Schema of the proposed testing framework

Fig. 3. Forest used in our approach

Our implementation of cross-validation works as follows.
We initially split the elements generated by the mutant gener-
ation step into 10 sets. These 10 sets will conform two sets: a
training set, including 9 of these sets, and a fest set, including
the remaining set. As usual, the purpose of the training set is
to generate a good solution (in this case, a good test suite)
and the purpose of the test set is to test how good the solution
is when working on new elements. We repeat this process 10
times, considering all the possible combinations. In the first
iteration we chose the first set of mutants as test set while the
sets 2,3...,10 conform the training set. In the next iteration
we use the second set of mutants as the test set and the set of
mutants 1,3 ... 10 as a training set. The last iteration considers
that the tenth set of mutants is the test set while the first 9 set of
mutants conform the training set. We combine all the obtained
results to compute an average value of the performance of the
process for all test sets. This process is depicted in Figure 5.

In our experiments, we test three small but not trivial Java
methods: given a tree, they produce a list of pairs where, for
each node of the tree, a pair is added to the list with two
values: the depth in the tree of the node and the order, from
left to right, of the node between its depth. Then, with this

Data: tree input 7'
i =[]
for node n in T do
‘ li.append([n.depth(), n.orderInDepth()]);
end
li.sortBy(orderInDepth);
r=0.0;
for orderInDepth o in li do
| r+=sum({d : [d.o] in li})/size({d : [d,0] in 1i});
end
return returnFunct(r);
Algorithm 1: Pseudo-code of the methods algorithm.

list, we sort it using the order of the nodes. Once the list is
sorted, we compute, for each order, the mean of the depths,
that is, we sum the values of the depths and divide them by
the number of elements. Finally, we sum the means of all the
orders, obtaining a real number. Then, with this number, each
method performs differently:

¢ Real method: it returns the obtained number, that is, its
result is a real number.

o Integer method: it returns the truncation of the obtained
number, that is, its result is an integer number.

e Boolean method: it returns true if the truncation of the
obtained number is even, and false otherwise. Then, its
result is a boolean value.

A pseudo-code of the methods algorithm is displayed in
Algorithm 1.

We tried these three methods using common operations but
different return type in order to test how well our algorithm
performs in different difficulty scenarios. With the real method
it will be easier to detect a mutation, because the possible
output values are a huge range of values, while with the
boolean method will be harder to detect a mutation because the

Cross-validation split

Split Test
M(n+1)
Mutant Test] B
() 3 Produce Mutants esting L
;’It\;tag::nerat\on Method Give Method Generation @ Start -
P Tool Split Train .
MN
Use
Mutants
k
Get Fitness Y
Score | Kill Mutants Mutation
TBest Testing
A
.
. Killed
2 Test Suite Generation | Create Initial - Gen:aeticn Not Enough Mutants
Step Start | Population — Fitness
Heuristic
Y
Performance |
Enough Fitness Get Best Forest
Fig. 4. Schema of the experiments flow
M1,.....,MN mutants
M1,...Mn M(n+1).....M(2n) M(2n+1),....M(3n) M(3n+1),...M(4n) M(4n+1)....M(5n) M(5n+1).....M(6) M(6n+1).....M(7n) M(7n+1).....M(8R) M(8n+1)....M(en) | [M(an+1)....MN
s1 52 s3 54 S5 56 s7 S8 s9
Test Set 1 Train Set 1
s1 52-510
Test Set 2 Train Set 2
52 51,53-510

Test Set 10
slo

Train Set 10
S1-59

Fig. 5. Schema of the cross validation

possible values are 2, and therefore the possibility that, when
tested with the same tree, both the mutated and the original
method return the same result is higher.

Formally, the main differences between the output spaces
of the three methods are:

o Real method: the output space is an infinite non-countable
set, and therefore, its cardinality is |R| = N;.

« Integer method: the output space is an infinite countable

set, and therefore, its cardinality is |Z| = No.

« Boolean method: the output space is a finite countable

set, and its cardinality is |B| = 2.

These differences show that the sensibility to mutations of
each method is different. In fact, it is proportional to the
cardinality of their output spaces: output spaces with high
cardinality will yield high sensibility to mutations and vice
versa. Thus, methods with lower cardinality will have more
cases of Failed Error Propagation when mutated and, therefore,
it will be harder to detect those mutations [25]. This leads to
fewer inputs that reveal the fault introduced by the mutation,
hindering the selection of good test suites. As a conclusion,
output spaces with low cardinality will suppose a higher
challenge for our experiments, as we will see later on.

We have implemented our methods in Java and, therefore,
we have to use a mutant generation tool for Java code.

Although there are several academic and industrial tools to
generate mutants from Java code, we have decided to stick
with the classical system: MuJava [33]. We have done so
because it is the latest updated tool that gives the source
code of the generated mutants, which are the two requisites
we need for our experiments. We explored other alternatives,
specifically, recently updated alternatives, but the only tool
we found was Pitest [7]. The problem with Pitest was that,
although it produces more mutants, it is impossible to get
the source code of those mutants. Instead, Pitest gives you
an HTML file with the mutations performed, which is not
enough to reproduce them. Therefore, we revert to MuJava
due to its capacity to give the source and binary code of the
mutants. Other alternatives where discontinued before MuJava
was, therefore we assumed that they will be worse due to not
having the most recent mutation operators implemented.

We used the tool to generate 575 mutants of the real and
integer methods, and 593 mutants of the boolean method. We
split those mutants into 10 sets of 57 — 58 mutants (59 — 60
for the boolean method). With these sets, we build the two
comparison sets through cross-validation, obtaining training
sets of 517 — 518 mutants (533 — 534 for the boolean method)
and test sets of 58 — 57 mutants (60 — 59 for the boolean
method).

Integer Method

Boolean Method

% Mutants
killed by
Random
test suite

% Mutants
killed by
Framework
test suite

% Mutants
killed by
Random
test suite

0.8330434782608696

0.7032040472175379

0.6711635750421585

0.7652173913043478

0.6812816188870152

0.6897133220910624

0.8556521739130435

0.7453625632377741

0.7099494097807757

0.8956521739130435

0.7571669477234402

0.6998313659359191

0.7356521739130435

0.7453625632377741

0.684654300168634

0.8278260869565217

0.6509274873524452

0.7032040472175379

0.8504347826086956

0.7487352445193929

0.7048903878583473

0.8417391304347827

0.6998313659359191

0.6964586846543002

0.8956521739130435

0.7403035413153457

0.7048903878583473

0.7947826086956522

0.7504215851602024

0.6172006745362564

0.8765217391304347

0.7318718381112985

0.6711635750421585

0.8243478260869566

0.7032040472175379

0.6644182124789207

0.8660869565217392

0.7369308600337268

0.684654300168634

0.8452173913043478

0.718381112984823

0.6441821247892074

0.8104347826086956

0.7470489038785835

0.6930860033726813

0.7565217391304347

0.7369308600337268

0.6812816188870152

0.8556521739130435

0.7352445193929174

0.6711635750421585

0.8139130434782609

0.7453625632377741

0.7318718381112985

0.8608695652173913

0.7403035413153457

0.6526138279932546

0.808695652173913

0.7487352445193929

0.6930860033726813

0.8121739130434783

0.6981450252951096

0.6593591905564924

0.7860869565217391

0.7284991568296796

0.5345699831365935

0.8156521739130435

0.7386172006745363

0.7335581787521079

0.8869565217391304

0.6795952782462057

0.6930860033726813

0.8121739130434783

0.7436762225969646

0.657672849915683

0.88

0.6947723440134908

0.6795952782462057

0.8452173913043478

0.7048903878583473

0.7133220910623946

0.8765217391304347

0.7504215851602024

0.688026981450253

0.8660869565217392

0.7824620573355818

0.6897133220910624

0.8156521739130435

0.6981450252951096

0.7082630691399663

0.8608695652173913

0.7318718381112985

0.6644182124789207

0.8591304347826086

0.7352445193929174

0.6863406408094435

0.8660869565217392

0.7217537942664418

0.654300168634064

0.8243478260869566

0.684654300168634

0.6694772344013491

0.8382608695652174

0.7217537942664418

0.6762225969645869

0.8608695652173913

0.6593591905564924

0.7284991568296796

0.8208695652173913

0.7723440134907251

0.7200674536256324

0.8852173913043478

0.6644182124789207

0.6458684654300169

0.831304347826087

0.7234401349072512

0.7369308600337268

0.8573913043478261

0.7537942664418212

0.7065767284991569

0.8643478260869565

0.6779089376053963

0.7116357504215851

0.8121739130434783

0.7571669477234402

0.6728499156829679

0.8626086956521739

0.7032040472175379

0.7133220910623946

0.8173913043478261

0.6694772344013491

0.7622259696458684

0.8260869565217391

0.7706576728499157

0.7453625632377741

0.8486956521739131

0.7757166947723441

0.6677908937605397

0.8034782608695652

0.7268128161888702

0.654300168634064

0.7895652173913044

0.7689713322091062

0.718381112984823

0.8539130434782609

0.6779089376053963

0.688026981450253

Real Method
% Mutants % Mutants % Mutants
Trial killed by killed by killed by
Number | Framework Random Framework
test suite test suite test suite

1 0.8573913043478261 | 0.8104347826086956 | 0.8347826086956521
2 0.8817391304347826 | 0.8782608695652174 | 0.8834782608695653
3 0.8539130434782609 | 0.7773913043478261 | 0.8991304347826087
4 0.88 0.8765217391304347 | 0.8278260869565217
5 0.8991304347826087 | 0.8556521739130435 | 0.8834782608695653
6 0.8904347826086957 | 0.8417391304347827 | 0.8539130434782609
7 0.8660869565217392 | 0.8956521739130435 | 0.8869565217391304
8 0.8782608695652174 | 0.808695652173913 0.8643478260869565
9 0.8347826086956521 | 0.8347826086956521 | 0.8747826086956522
10 0.8556521739130435 | 0.8486956521739131 | 0.8834782608695653
11 0.9026086956521739 | 0.8573913043478261 | 0.8504347826086956
12 0.8817391304347826 | 0.88 0.8243478260869566
13 0.8921739130434783 | 0.8469565217391304 | 0.7373913043478261
14 0.88 0.831304347826087 | 0.8852173913043478
15 0.888695652173913 0.8782608695652174 | 0.8869565217391304
16 0.9095652173913044 | 0.7443478260869565 | 0.8226086956521739
17 0.8991304347826087 | 0.782608695652174 | 0.8852173913043478
18 0.888695652173913 0.8121739130434783 | 0.8782608695652174
19 0.9043478260869565 | 0.8678260869565217 | 0.8695652173913043
20 0.8747826086956522 | 0.8660869565217392 | 0.8939130434782608
21 0.8817391304347826 | 0.8747826086956522 | 0.831304347826087
22 0.8556521739130435 | 0.8817391304347826 | 0.8573913043478261
23 0.8765217391304347 | 0.8573913043478261 | 0.8660869565217392
24 0.8765217391304347 | 0.8469565217391304 | 0.8243478260869566
25 0.8973913043478261 | 0.8191304347826087 | 0.8765217391304347
26 0.8939130434782608 | 0.8434782608695652 | 0.88

27 0.8521739130434782 | 0.8504347826086956 | 0.888695652173913
28 0.871304347826087 | 0.8834782608695653 | 0.8139130434782609
29 0.7930434782608695 | 0.8365217391304348 | 0.8365217391304348
30 0.8521739130434782 | 0.8678260869565217 | 0.8452173913043478
31 0.8539130434782609 | 0.8417391304347827 | 0.8121739130434783
32 0.8539130434782609 | 0.8765217391304347 | 0.88

33 0.831304347826087 | 0.8695652173913043 | 0.8330434782608696
34 0.8695652173913043 | 0.8695652173913043 | 0.8347826086956521
35 0.88 0.8469565217391304 | 0.8034782608695652
36 0.8782608695652174 | 0.8660869565217392 | 0.8695652173913043
37 0.8139130434782609 | 0.8643478260869565 | 0.8852173913043478
38 0.8904347826086957 | 0.831304347826087 | 0.8452173913043478
39 0.9008695652173913 | 0.8678260869565217 | 0.8330434782608696
40 0.8678260869565217 | 0.8208695652173913 | 0.8765217391304347
41 0.9060869565217391 | 0.9026086956521739 | 0.8173913043478261
42 0.8347826086956521 | 0.7930434782608695 | 0.8295652173913044
43 0.8834782608695653 | 0.84 0.8852173913043478
44 0.8991304347826087 | 0.8747826086956522 | 0.8539130434782609
45 0.8226086956521739 | 0.8782608695652174 | 0.8417391304347827
46 0.8904347826086957 | 0.8208695652173913 | 0.84

47 0.88 0.8817391304347826 | 0.8121739130434783
48 0.8817391304347826 | 0.831304347826087 | 0.8417391304347827
49 0.8678260869565217 | 0.8608695652173913 | 0.808695652173913
50 0.9026086956521739 | 0.8417391304347827 | 0.7878260869565218

0.8643478260869565

0.7436762225969646

0.6745362563237775

TABLE I

RESULTS OF THE EXPERIMENTS.

In order to analyse the effectiveness of our test suites, we
checked for equivalent mutants using the Trivial Compiler
Equivalence. We used the Trivial Equivalent mutant Detector
(TeD) from [28], as it is optimised for MuJava mutants.
However, we detected no equivalent mutants. We also checked
for duplicated mutants, and we detected 40 for the real and
integer methods, and 44 for the boolean method. However,
we checked that those duplicated mutants corresponded to
different potential errors of a programmer, and therefore we
decided to keep them in order to measure how many potential
errors each test suite can find.

For the test suite generation step, as we have explained
before, we used as tree generation heuristic a version of the

PSO algorithm adapted to consider that particles are trees.
We used as fitness function of our algorithm the number of
mutants killed by each test suite and the algorithm evolves
them towards the test suite that kills more mutants.

In order to test how good our generated test suite is, we
take the test set and check how many mutants our best test
suite kills, comparing the results with how many mutants a
randomly generated test suite kills. It is worth mentioning
that many studies claim that random selection is not much
worse than intelligent approaches [6], [34], [38]. Therefore,
an indicative of the usefulness of our proposal is to show that
we are able to consistently outperform it. In order to have a
greater challenge, and give a certain initial advantage to the

random approach, we set that the elements of the randomly
generated test suite will have the maximum number of possible
nodes (in our case, this is a total of 10 nodes).

We executed our experiments 50 times and we obtained
the results displayed in Table I. On average, 81.62774788%
of the mutants where killed by the test suite obtained by
our framework while a randomly generated test suite killed
79.078460298% of the mutants. We think that this difference
shows experimental evidence to claim that our framework is
performing better than a randomly generated test suite that
has the advantage of having at least the same size than the
test suite that we build.

Analysing the results by method, we can see how the
differences in the output cardinality lead to different results:

o Real method: 87.35652173913043% of the mutants were
killed by the test suite obtained using our frame-
work, while a randomly generated test suite killed only
84.87304347826087% of the mutants.

o Integer method: 85.07478260869563% of the mutants
were killed by the test suite obtained using our frame-
work, while a randomly generated test suite killed only
83.71478260869567% of the mutants.

o Boolean method: 72.45193929173693% of the mutants
were killed by the test suite obtained using our frame-
work, while a randomly generated test suite killed only
68.64755480607081% of the mutants.

The consistent differences between the means of killed mutants
for the different methods (specially between the real and
integer methods, which have exactly the same mutants) are
an empirical evidence of how the cardinality of the outputs
influences the sensibility of the method to mutations, and
therefore, the difficulty of finding a good test suite for it.
Over the obtained results, we performed a statistical hypoth-
esis test whose null hypothesis was that a random test suite and
a test suite obtained using our framework give similar results,
that is, both kill a similar amount of mutants. We applied a
one-way ANOVA test where we tested whether the results of
both test suites are similar in average. Then, we computed the
p-values for each method, obtaining the following results:

o Real method: p-value of 3.92 - 10> < 0.05.
o Integer method: p-value of 0.049 < 0.05.
« Boolean method: p-value of 2.77 - 10~7 < 0.05.

As it can be seen, in all cases the null hypothesis was rejected
with a p-value lower than 0.05, thus allowing us to state that
our framework gets different results than using a random test
suite with a confidence higher than 0.95. In order to double-
check our results, we also performed a t-test and obtained the
same p-values. Therefore, we can claim with a high certainty
that, statistically, our framework performs better than using a
random test suite, in any scenario.

V. THREATS TO VALIDITY

In this section we briefly discuss some of the possible threats
to the validity of the results of our experiments. Concerning
threats to internal validity, which consider uncontrolled factors

that might be responsible for the obtained results, the main
threat is associated with the possible faults in the developed
experiments because they could lead to misleading results.
In order to reduce the impact of this threat we tested our
code with carefully constructed examples for which we could
manually check the results. In addition, we repeated the
experiments many times in order to get a mean so that the
randomisation impact is reduced.

The main threat to external validity, which concerns condi-
tions that allow us to generalise our findings to other situations,
is the different possible methods to which we could apply our
framework. Such a threat cannot be entirely addressed since
the population of possible tree-input methods is unknown and
it is not possible to sample from this (unknown) population.
In order to diminish this risk, we considered different methods
during the development of the work, focusing on different
parameters, but the results were very similar (that is the
reason why in this paper we report only on the results of
the experiments that modify the output range).

Finally, we considered threats to construct validity, which
are related to the reality of our experiments, that is, whether
our experiments reflect real-world situations or not. In our
work, the main construct threat is what would happen if we use
our framework with much more complex methods. Although
this is a potential threat, we consider that it is minor because
our methods fulfil the requisites that any method receiving a
tree input should fulfil and, therefore, are as valid as any other
method receiving trees as inputs.

VI. CONCLUSIONS

We have proposed a new framework to test methods that
accept structured types as inputs. Our framework strongly
relied on a classical testing technique, mutation testing, to
evaluate the suitability of the obtained tests and in Evolu-
tionary techniques, in particular in evolutionary computation,
to produce the test sets. Specifically, we have used a novel
variant of PSO to deal with trees as individuals of the
population. With this new framework, new test suites can be
generated for a given method without having to design an ad-
hoc battery of tests, which is a difficult and time consuming
task. The complexity of the problem confronted in this paper
is associated with the inherent difficulty to analyse methods
having as parameters structured elements instead of simple
numeric values. In addition to present the new framework, in
this paper we have reported some of our experiments. The goal
of the experiments was to show that the test suites generated by
using our framework were better, concerning their capabilities
to kill mutants, than randomly generated test suites. We think
that the results show that this is indeed the case.

This is only the first step of, what we expect to be, a long
research line. We have already identified several directions
for future work concerning applicability, scalability, suitability
and adaptability of our framework. First, we plan to apply
our framework to test methods with parameters belonging to
different (structured and simple) types. Second, we would like
to consider more complex methods and check whether our

technique scales well. We will consider classical algorithms
manipulating tree-like data structures [31]. In this line, it will
be important to use recent advances on mutation testing [5],
[15], [18] to support our framework. Concerning suitability,

we

have two orthogonal lines of work. First, we would

like to compare our PSO approach with other metaheuris-
tics, specially Genetic Programming [30]. In addition, recent
contributions dealing with the integration of Computational
Intelligence and Complex Events Processing [11], [12] might
be related to our work. Second, we would like to consider
methods with existing test suites, produced by an expert, and
compare the quality of the existing test suites and the ones
produced by our framework. Finally, concerning adaptability,
we would like to assess the usefulness of our methodology
in other frameworks. In particular, we will consider more
complicated testing frameworks where communications are
asynchronous [21], [35], [36] and/or data can be distributed
among different components [22], [23].

[1]
[2]

[4

=

[5]

[6]

[7

—

[8

[t

[9

—

[10]

[11]

[12]

[13]
[14]

[15]

REFERENCES

P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 2nd edition, 2017.

C. Andrés, M. G. Merayo, and M. Nuiez. Multi-objective genetic
algorithms: Construction and recombination of passive testing properties.
In 22nd Int. Conf. on Software Engineering & Knowledge Engineering,
SEKE’10, pages 405-410. Knowledge Systems Institute, 2010.

E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle
problem in software testing: A survey. IEEE Transactions on Software
Engineering, 41(5):507-525, 2015.

M. Benito-Parejo, I. Medina-Bulo, M. G. Merayo, and M. Nifiez. Using
genetic algorithms to generate test suites for FSMs. In 15th Int. Work-
Conf. on Artificial Neural Networks, INVANN’19, LNCS 11506, pages
741-752. Springer, 2019.

P. C. Canizares, A. Nufiez, and M. G. Merayo. Mutomvo: Mutation
testing framework for simulated cloud and HPC environments. Journal
of Systems and Software, 143:187-207, 2018.

T. Y. Chen, E-C. Kuo, R. G. Merkel, and T. H. Tse. Adaptive Random
Testing: The ART of test case diversity. Journal of Systems and Software,
83(1):60-66, 2010.

H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque. PIT:
a practical mutation testing tool for java (demo). In 25th Int. Symp. on
Software Testing and Analysis, ISSTA’16, pages 449-452. ACM Press,
2016.

P. Delgado-Pérez, 1. Medina-Bulo, and J. J. Dominguez-Jiménez. Mu-
tation testing. In Encyclopedia of Information Science and Technology,
pages 7212-7221. IGI Global, 3rd edition, 2014.

P. Delgado-Pérez, 1. Medina-Bulo, and M. Nuifiez. Using evolutionary
mutation testing to improve the quality of test suites. In /9th IEEE
Congress on Evolutionary Computation, CEC’17, pages 596—-603. IEEE
Computer Society, 2017.

K. Derderian, M. G. Merayo, R. M. Hierons, and M. Nufiez. A case
study on the use of genetic algorithms to generate test cases for temporal
systems. In 11th Int. Conf. on Artificial Neural Networks, INVANN’11,
LNCS 6692, pages 396-403. Springer, 2011.

G. Diaz, H. Macia, V. Valero, J. Boubeta-Puig, and F. Cuartero. An
intelligent transportation system to control air pollution and road traffic
in cities integrating CEP and colored petri nets. Neural Computing and
Applications, 32(2):405-426, 2020.

G. Diaz, H. Macia, V. Valero, J. Boubeta-Puig, and G. Ortiz. Facilitating
the quantitative analysis of complex events through a computational in-
telligence model-driven tool. Scientific Programming, 2019:2604148:1—
2604148:17, 2019.

M. Dorigo and T. Stiitzle. Ant Colony Optimization. MIT Press, 2004.
D. E. Goldberg. Genetic Algorithms in Search, Optimisation and
Machine Learning. Addison-Wesley, 1989.

P. Gémez-Abajo, E. Guerra, J. de Lara, and M. G. Merayo. A
tool for domain-independent model mutation. Science of Computer
Programming, 163:85-92, 2018.

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]
[29]
[30]
[31]

(32]

(33]

[35]

[36]

[37]

[38]

[39]

[40]

D. Grifian, A. Ibias, and M. Nuifez. Grammar-based tree swarm
optimization. In 2019 IEEE Int. Conf. on Systems, Man and Cybernetics,
SMC’19, pages 76-81. IEEE Press, 2019.

A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr. Swarm testing. In
22nd ACM SIGSOFT Int. Symposium on Software Testing and Analysis,
ISSTA’12, pages 78-88. ACM Press, 2012.

L. Gutiérrez-Madrofial, A. Garcia-Dominguez, and I. Medina-Bulo.
Evolutionary mutation testing for IoT with recorded and generated
events. Software - Practice & Experience, 49(4):640-672, 2019.

M. Harman and P. McMinn. A theoretical and empirical study of search-
based testing: Local, global, and hybrid search. IEEE Transactions on
Software Engineering, 36(2):226-247, 2010.

R. M. Hierons, M. G. Merayo, and M. Nufiez. Mutation testing. In
Phillip A. Laplante, editor, Encyclopedia of Software Engineering, pages
594-602. Taylor & Francis, 2010.

R. M. Hierons, M. G. Merayo, and M. Niiiez. An extended framework
for passive asynchronous testing. Journal of Logical and Algebraic
Methods in Programming, 86(1):408-424, 2017.

R. M. Hierons, M. G. Merayo, and M. Nufez. Bounded reordering
in the distributed test architecture. IEEE Transactions on Reliability,
67(2):522-537, 2018.

R. M. Hierons and M. Nifez. Implementation relations and probabilistic
schedulers in the distributed test architecture. Journal of Systems and
Software, 132:319-335, 2017.

A. Ibias, D. Grifian, and M. Niiflez. GPTSG: a Genetic Programming
Test Suite Generator using Information Theory measures. In 15th Int.
Work-Conf. on Artificial Neural Networks, INANN’19, LNCS 11506,
pages 716-728. Springer, 2019.

A. Ibias, R. M. Hierons, and M. Nuiflez. Using Squeeziness to test
component-based systems defined as Finite State Machines. Information
& Software Technology, 112:132-147, 2019.

Y. Jia and M. Harman. An analysis and survey of the development
of mutation testing. [EEE Transactions on Software Engineering,
37(5):649-678, 2011.

J. Kennedy and R. Eberhart. Particle swarm optimization. In Int. Conf.
on Neural Networks, ICNN’95, pages 19421948, 1995.

M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. Le Traon, and M. Har-
man. Detecting trivial mutant equivalences via compiler optimisations.
IEEE Transactions on Software Engineering, 44(4):308-333, 2018.

S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671-680, 1983.

J. R. Koza. Genetic programming. MIT Press, 1993.

R. Lafore. Data Structures and Algorithms in Java. Sams Publishing,
2nd edition, 2002.

H. Liu, F-C. Kuo, D. Towey, and T. Y. Chen. How effectively does
metamorphic testing alleviate the oracle problem? IEEE Transactions
on Software Engineering, 40(1):4-22, 2014.

Y.-S. Ma, J. Offutt, and Y. R. Kwon. MuJava: an automated class muta-
tion system. Software Testing, Verification and Reliability, 15(2):97-133,
2005.

R. Majumdar and F. Niksic. Why is random testing effective for partition
tolerance bugs? Proceedings of the ACM on Programming Languages,
2:46:1-46:24, 2017.

M. G. Merayo, R. M. Hierons, and M. Nufiez. Passive testing with
asynchronous communications and timestamps. Distributed Computing,
31(5):327-342, 2018.

M. G. Merayo, R. M. Hierons, and M. Nuiflez. A tool supported
methodology to passively test asynchronous systems with multiple users.
Information & Software Technology, 104:162-178, 2018.

M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman.
Mutation testing advances: An analysis and survey. volume 112 of
Advances in Computers, pages 275 — 378. Elsevier, 2019.

S. Shamshiri, J. M. Rojas, L. Gazzola, G. Fraser, P. McMinn, L. Mariani,
and A. Arcuri. Random or evolutionary search for object-oriented test
suite generation? Software Testing, Verification & Reliability, 28(4),
2018.

M. Stone. Cross-validatory choice and assessment of statistical predic-
tions. Journal of the Royal Statistical Society: Series B (Methodologi-
cal), 36(2):111-133, 1974.

A. Windisch, S. Wappler, and J. Wegener. Applying particle swarm
optimization to software testing. In 9th Genetic and Evolutionary
Computation Conference, GECCO’07, pages 1121-1128. ACM Press,
2007.

