
Using a swarm to detect hard-to-kill mutants
Alfredo Ibias

Universidad Complutense de Madrid
Madrid, Spain
aibias@ucm.es

Manuel Núñez
Universidad Complutense de Madrid

Madrid, Spain
manuelnu@ucm.es

Abstract—Mutation Testing is an effective testing technique
that relies in the generation of mutants from the system under
test. The main limitation of this technique is that the potential
number of mutants is usually huge. Therefore, it is important to
classify and select mutants in order to avoid repetitive, useless
or excessive computations, and biased results. In this paper we
focus on avoiding too many executions and/or biased results by
classifying mutants into two categories: hard-to-kill and easy-to-
kill mutants. We propose a new swarm intelligence algorithm to
classify a set of mutants between those two classes and we show
how our algorithm compares to other approaches.

Index Terms—Mutation Testing, Swarm Intelligence, Mutant
Selection

I. INTRODUCTION

Software Testing [2], [31] is the most widely used technique
to detect faults in software systems. Software testing includes
different approaches and methodologies that target specific
categories of faults. Most approaches try to increase code
coverage, that is, try to build test suites that traverse all
the paths of the system that are relevant with respect to a
certain criterion. In this paper we focus on mutation testing,
an approach that does not only focus on showing where to test,
but also on helping to identify what should be checked for.
Experimental evidence has showed that tests suites produced by
mutation testing approaches were significantly better than the
(high quality) manually written ones [17]. Intuitively, mutation
testing considers a software system, that we would like to
evaluate, and variants of this system, called mutants, that
represent potential faults of the system. The goal is to find good
test suites that kill all the mutants: a test case kills a mutant
if the application of the test to the original system and to the
mutant produces different results. If a mutant is alive after the
application of all the test cases, then we have to analyse whether
our test suite was not good enough or the mutant is equivalent
to the original system.

Mutant selection is critical because it ameliorates the scal-
ability problem associated with mutation testing: usually, we
have huge amounts of potential mutants. Producing and work-
ing with a large number of mutants is impractical, as they need
to be analysed, compiled, executed and killed by test cases.
This is an important problem and, actually, makes difficult

Research partially supported by the Spanish MINECO/FEDER project
FAME (RTI2018-093608-B-C31), the Comunidad de Madrid project FORTE-
CM (S2018/TCS-4314) co-funded by EIE Funds of the European Union and the
Region of Madrid - Complutense University of Madrid (grant number PR65/19-
22452).

the wide applicability and large adoption of mutation testing.
Classically, mutant selection tried to solve this problem through
the reduction of the size of the mutants sets used in the
process, defining mutant reduction strategies such as selective
mutation [36], [43] and random mutant selection [1].

Previous work has focused on classifying mutants based on
different characteristics. For example, it is usually assumed that
harder to kill mutants are more useful than the easy to kill ones,
but there are many categories. Hard-to-kill mutants are usually
considered to be the ones killed by a small fraction of the
considered test cases, but there is also work identifying hard-
to-kill mutants based on the internal structure of the code of
the given system under test [42]. A recent work [37] identifies
different criteria to classify mutants (hard to kill, subsuming,
hard to propagate and fault revealing) and show that each
of them classifies different mutants as the preferable ones
for mutation testing. Moreover, the authors found that there
is a weak connection between these classifications and fault
revelation. However, they conclude that hard-to-kill mutants are
the ones more related to fault revelation.

Our goal in this paper is to classify a set of mutants
between hard-to-kill and easy-to-kill mutants, with the idea
that this kind of mutants gives a compromise between easy
to classify and fault detection ability. We propose an approach
based in the Swarm Intelligence Algorithms theory [6], [40], a
family of algorithms that naturally falls into the Computational
Collective Intelligence [10], [32]–[34] research area, to address
this problem. In previous work other authors have proposed
different approaches for mutant classification, including using
machine learning methods [13], [25], [28], but we are not
aware of a hard-to-kill mutant classification algorithm based
on Swarm Intelligence Algorithms theory. In our work, we use
a swarm of agents to apply tests to small sets of mutants with
the goal of building a hard-to-kill set of mutants from the results
obtained by the agents.

The paper is organised as follows. First, in Section II, we
present some basic concepts needed to understand our work.
Then, we explain our algorithm (Section III) and we present
the experiments that we performed to assess its performance
(Section IV). Finally, we present the threats to the validity
(SectionV) and the conclusions of our work (Section VI).

II. PRELIMINARIES

In this section we present basic information about the two
main fields that we consider in this paper: mutation testing and



swarm intelligence algorithms.

A. Mutation Testing

Software Testing is a broad field of techniques with the
goal of detecting faults in software systems. Essentially, testing
consists in applying a set of inputs to the System Under
Test (SUT), observe the generated output, and decide whether
this output is consistent with the expected output. In order to
perform this decision, it is necessary some kind of oracle that
determines which one is the correct output. In some cases,
there is no oracle available and the testers should resort to
other kind of techniques to determine what constitutes a valid
output [3]. One of the techniques to overcome this oracle
problem is mutation testing. Mutation testing is not just an
academic methodology because it has been successfully used
in real software systems [38].

A mutant is a modified version of the SUT that includes a
fault. These faults can be randomly seeded or following some
guide and can be generated either automatically or manually.
Then, when applying a test to a mutant, we will check whether
the produced output is different to the output obtained after
applying the test to the original SUT. If the outputs are different,
then we say that the mutant has been killed. If the mutant is
not killed then we have three different possibilities: the fault
has not been executed, the fault has been executed but it has
not propagated to the output, or the mutant is equivalent to the
original SUT. Intuitively, mutation testing uses the SUT as a
kind of oracle and generates mutants from it with the goal of
having faulty versions of the SUT to assess the quality of the
generated tests. Then, the quality of a test is assessed with a
metric called mutation score, which represents the percentage
of mutants that the test has killed.

Just as we can classify the tests using their mutation score,
we can classify the mutants depending on how many tests kill
those mutants. This idea crystallises in the concept of hard-to-
kill mutants, that is, those mutants that are killed by a small
amount of tests (as opposed to easy-to-kill mutants, which are
those that are killed by most of the tests). In previous work,
there have been different definitions of hard-to-kill mutants, all
of them with the idea that hard-to-kill mutants are the hardest
to find with a test. It is possible to provide a certain bound,
for example, those killed by 5% or 2.5% of the tests [37].
Another possibility [42] is to mark a mutant as hard-to-kill if
it presents a specific internal structure. In this paper we will
consider as hard-to-kill mutants those that are the least killed,
using a variable measure instead of a fixed cap.

B. Swarm Intelligence Algorithms

Swarm Intelligence Algorithms [6], [40] are a family of
algorithms that base its intelligent behaviour in their swarm
interactions. In this kind of algorithms, there is a swarm of
agents, where each agent has little to no intelligence. Usually,
these agents perform basic and repetitive tasks. The intelligent
behaviour from the Swarm Intelligence Algorithms comes from
the fact that joining all the information obtained by the individ-
ual agents allows the swarm to perform intelligent decisions.
This characteristic of the Swarm Intelligence Algorithms is the

Set parameters;
Initialise kill matrix (all zeros);
Initialise iteration-hard-to-kill list (all mutants);
Initialise final-hard-to-kill list (empty);
while iteration-hard-to-kill list is not empty do

Assign a mutant and a set of tests to each agent;
Each agent applies its set of tests to its mutant;
Each agent updates the kill matrix;
Update iteration-hard-to-kill list;

end
Return final-hard-to-kill list;

Algorithm 1: Heuristic: general scheme

so called emergence property. This property is the basic key for
the good results obtained by Swarm Intelligence Algorithms,
like the widely known Particle Swarm Optimisation (PSO)
algorithm [26] and its most recent variation the Tree Swarm
Optimisation [20]. This last algorithm has been recently applied
to the Software Testing field [19].

III. SWARM MUTANT CLASSIFICATION

We work with a scenario where we have m mutants and t
tests. Our goal is to detect those mutants that are hard to kill
by this set of tests, having in mind that our approach should
represent a good balance between the computing time and the
quality, in terms of the proportion of (un-)detected interesting
mutants, of the obtained solution. We have considered a swarm
heuristic that avoids the application of the full set of tests to all
the mutants and that, at the same time, gives more flexibility
than setting a fixed cap to decide when a mutant is hard-to-
kill [37].

Our heuristic uses three important elements:
• Agents conform the swarm that performs the evaluation.

We will have a agents.
• The Kill Matrix is the matrix where the agents store the

information. It will encode which tests kill which mutants,
which tests fail to kill which mutants, and which tests have
not been applied to which mutants.

• The hard-to-kill mutants lists store the promising hard-to-
kill mutants. These lists are updated after each iteration of
our algorithm. We will have two hard-to-kill mutants lists:
one for storing the considered hard-to-kill mutants in the
current iteration (this one guides the algorithm), and one
for storing the final solution.

In Algorithm 1 we present a high-level view of our heuristic.
For each iteration, our heuristic has four steps:

• For each of the agents, we choose one mutant from the
iteration-hard-to-kill list and choose n << t tests1 that
will be applied to that mutant (and that have not been
applied previously) and assign them to an agent. If we
detect that a mutant cannot leave the iteration-hard-to-kill
list with the remaining tests, we add this mutant to the
final-hard-to-kill list and take another mutant.

• Each agent applies its set of n tests to its mutant.

1Note that n is chosen by the user. For our experiments, we used n = 5.



• Each agent updates the kill matrix. We use the following
convention:

– 1: the mutant has been killed by that test.
– 0: the test has not been applied to the mutant.
– −1: the mutant has not been killed by that test.

• The iteration-hard-to-kill list is updated.
The update of the iteration-hard-to-kill list is the most critical

step of the algorithm, because it is where the emergence
property arises. In this step, the list of mutants considered to be
hard-to-kill is updated. The selection is performed after each
iteration as a way to guide the development of the algorithm.
After each iteration we compute how many tests killed each
mutant, storing the highest (max) and the lowest values (min).
Then, we mark as hard-to-kill mutants the ones whose value is
less than or equal to:

min+
max−min

4

Note that this bound is selected by us but other different bounds
could be used. For instance, using this bound we choose all the
mutants that after this iteration are in the the lowest quarter of
the obtained values. Finally, we remove from the iteration-hard-
to-kill list the mutants that are already in the final-hard-to-kill
list. We also remove those that have already been tested with
all the tests, and we add them to the final-hard-to-kill list.

An interesting property of our heuristic is that the max value
does not have to be equal to the maximum number of tests that
kill a mutant. In other words, even if a mutant is killed by all the
tests, it is possible that the max value is lower than t (the total
number of tests). This happens because the difference between
max and min will be lower or equal to 4

3 · n and, therefore,
we can have max < min+ 4

3 · n < t (and that will be usually
the case).

Our heuristic is able to overcome two problems when decid-
ing which mutants are hard-to-kill and which ones are not. The
first one is that, in general, it is not necessary to apply all the
tests to all the mutants. This will avoid the associated costs of
other algorithms based on brute force. The second one is that
our heuristic is more flexible than an approach based on fixed
percentages. For example, if we define hard-to-kill mutants as
the mutants that are killed by at most 5% of the tests, but we
have a situation where we have 100 tests and all the mutants
are killed by at least 6 tests, then the set of hard-to-kill mutants
will be empty. If we use our algorithm in the same situation,
our set of hard-to-kill mutants will not be empty because those
6 tests will provide the min value of our range. Therefore, we
will always have mutants that can be considered, under the
circumstances, the hardest-to-kill of all the generated mutants.
This implies that our heuristic will be more consistent than
other algorithms like random selection.

IV. EXPERIMENTS

In this section we present the experiments that we performed
to measure the usefulness of our approach. We wanted to
compare our algorithm with three different alternatives: a brute
force approach that consists in executing all the tests over
all the mutants and afterwards determining which mutants we

consider hard-to-kill; a cap approach where we execute only
the necessary tests to know if a mutant overcomes a previously
fixed cap; and a random algorithm that executes randomly tests
on mutants and then computes the solution. Therefore, our main
goal was to answer two questions:

Research Question 1: How many test applications does our
approach save when compared to a brute force approach? How
different is our approach from a cap-based approach?

Research Question 2: What is the quality of the solution of
our approach and how good it is compared with the solution
obtained by a cap-based approach and a random approach?

Our heuristic strongly depends on the application of tests
to mutants. However, we only use whether a given mutant
was killed by a certain test; we do not use any information
concerning the actual application of the test (e.g. which parts
of the code of the mutant were traversed). Therefore, we
only need a kill matrix encoding the result of the application
of tests to mutants. Each position i, j of the matrix says
whether the ith test kills the jth mutant. We have used
the matrices provided by a recent work [13], available at
https://mutationtesting.uni.lu/farm/. These matrices where build
from a set of mutants generated from the CodeFlaws [41] and
CoREBench [7] program sets, and a set of tests generated by
using KLEE [9] for each program. This combination arises
1, 737 matrices, with a total count of 4, 778, 157 mutants and
144, 738 tests, what needed 8, 463 CPU days of computation.
Breaking down by benchmark, the CodeFlaws program set
brings a total of 3, 213, 543 mutants and 122, 261 test cases
from 1, 692 programs with between 1 to 322 lines of code
(mean of 36 lines of code). The CoREBench program set brings
a total of 1, 564, 614 mutants and 22, 477 test cases from 45
programs with between 9, 000 and 83, 000 lines of code. In
computation terms, the CodeFlaws benchmark needed 8, 009
CPU days of computation and the CoREBench benchmark used
454 CPU days of computation to generate all their mutants.

We applied our heuristic to the kill matrix of each program,
computing the number of total operations (that is, the number
of tests that are applied) and computing the resulting hard-to-
kill mutants. As an additional step we computed average values
and some quality indicators. These last values will be useful to
compare our solutions with respect to previous work [37] where
hard-to-kill mutants are those killed by less than 5% of tests.
Specifically, we would like to know how different are our hard-
to-kill mutants sets from the ones generated using a fixed cap
approach and how many extra operations we save. Therefore,
we also implemented an algorithm to compute those mutants
that are killed by 5% of the the tests or less. The algorithm is
very simple: it traverses each row of the matrix until more than
5% of the tests have killed the mutant (so it is not a hard-to-kill
mutant). We store the quality indicators of these sets of mutants
and the number of operations (that is, the number of elements
of the matrix that have been accessed) needed to compute them.

In order to have an easier visualisation of the results of
our experiments, we combine all these values and plot them.
In Figure 1 we have the relative number of operations for
each algorithm with respect to the total number of operations
obtained by all three algorithms: Brute Force, our Swarm



Mutant Classification (SMC) and the cap algorithm. We can
observe that our SMC always needs less operations than the
Brute Force algorithm and, depending on the program, may
need less operations than the cap algorithm. On average, the
Brute Force algorithm needed 70, 041 operations while our
SMC needed 25, 255 operations and the cap algorithm needed
25, 109 operations. That is, our SMC needs, on average, 61.97%
less operations (that would be applications of tests if we do
not have the killing matrix) while the cap algorithm saves, on
average, 68.99%.

We performed a statistical hypothesis test over the results
concerning operations. The null hypothesis was that the cap
algorithm and our SMC algorithm give similar results, that
is, both need a similar number of operations. We applied a
one-way ANOVA test2 where we tested whether the values of
both algorithms are, on average, similar. Then, we computed
the p-value for the experiment, obtaining a p-value of 0.9044.
Therefore, we can confirm the null hypothesis for this experi-
ment because its p-value is much higher than 0.05. In order to
double-check our results, we performed a t-test and obtained the
same p-value. Thus, the conclusion is that the needed number
of operations of our SMC is equivalent to the number needed
for the cap algorithm.

In Figure 2 we present the relative operations percentage
saving with respect to the saving of both the cap algorithm and
our algorithm. We can see how they save some operations with
respect to the Brute Force algorithm and how, sometimes, our
algorithm outperforms the cap algorithm.

Next, we wanted to perform a quality assessment. In order to
do so, we compared our algorithm and the cap algorithm with
another new algorithm: the random algorithm. This algorithm
applies random tests to random mutants, filling a kill matrix,
and then chose the mutants that are killed by at most a fixed
number of tests. In our case, in order to compare with the cap
algorithm, we decided to take the mutants killed by less than 5%
of the tests. Also, in order to compare with our SMC algorithm,
we decided that the number of tests that the random algorithm
will apply will be equal to the number of tests applied by our
algorithm.

We assessed the quality with three indicators: how many
mutants that are killed by less than the 5% of tests are not
included in the solution; how many mutants that are killed by
more than the 25% of tests are included in the solution; and
how many mutants, that are killed by less tests than the ones
that kill the mutant of the solution that is killed by more tests,
are included in the solution. Using these three indicators, we
assess three different qualities of the hard-to-kill mutants sets,
respectively: how good is the algorithm obtaining the most hard
to kill mutants; how good is the algorithm avoiding mutants
that cannot be considered hard-to-kill, and how good is the
algorithm obtaining dense hard-to-kill mutants sets.

The results of the three algorithms are positive. For the cap
algorithm, as it is pretty consistent, the values for the three
indicators are equal to 0. For the random algorithm, the mean
for the first indicator is 0, for the second indicator is 31.61 and

2Note that we could use the ANOVA test because we performed an
homogeneity of variance check and it raised a positive result.

for the third indicator is 303.63. Finally, for our algorithm,
that is more flexible than the cap algorithm and it is less
random than the purely random algorithm, the mean for the
first indicator is 24.02, the mean for the second indicator is
1.12, and the mean for the third indicator is 51.16. Analysing
these results, we can conclude that the cap algorithm gives
what it says: the mutants that are killed by less than the 5% of
tests; that the random algorithm gives hard-to-kill mutants sets
that are more hollow, what indicates that their choice criteria is
less uniform; and that our algorithm gives hard-to-kill mutants
sets that are a middle point between the fixed criteria and the
random criteria, with more flexibility than the cap algorithm,
and with a huge improvement in the choice criteria over the
random algorithm.

In Figure 3 we summarise the results concerning the quality
of the obtained mutants. We show the cumulative values of
the first and second indicator for the two algorithms that
obtained values different from 0 and their relative values with
respect to the ones obtained by the other algorithm. White lines
correspond to cases were all the algorithms obtained a value of
0 for both indicators.

As a recap, answering the first research question, our SMC
saves 61.97% of the operations of the brute force approach and
needs a similar number of operations as the cap algorithm. In
fact, regarding number of operations, both algorithms are sta-
tistically equivalent. Concerning the second research question,
our approach obtains hard-to-kill mutants sets of good quality.
In fact, their quality is better than the quality of the solutions of
a random approach, and not so far to the quality of the solutions
of the cap approach. However, an advantage of our SMC over
the cap approach is that it avoids some extreme cases (from
both sides) that appear with it, what makes it a more reliable
tool to be used.

V. THREATS TO VALIDITY

Concerning the threats to the validity of our results, most of
them have been already addressed. Starting with the internal
validity threats, the main concern is whether our results can
be the product of internal faults in our experiments code. We
addressed this concern by thoroughly testing our code with
carefully constructed examples for which we could manually
check the results. Another important internal validity threat is
whether our results are valid in terms of time computation while
using kill matrices instead of properly apply the tests to the
mutants. In order to address this threat we compared the number
of performed operations instead of execution times, under the
assumption that the difference in execution time between tests
will not be so critical as the difference in execution time
between applying different number of tests. A final internal
validity threat is how the randomness associated with the
random algorithm affects the obtained results. In order to
overcome this threat we repeated the same experiment different
times and see that the mean results where similar enough to be
considered representative.

Concerning threats to external validity, here arises the ques-
tion of whether the kill matrices used in our work can be
generalised to other families of kill matrices. Although this



0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700
0

0.5

1

Program Number

N
um

be
r

of
O

pe
ra

tio
ns

Fig. 1. Relative number of operations (orange = Brute Force, yellow = SMC, blue = cap (5%)).

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700

0.2

0.4

0.6

0.8

1

Program Number

O
pe

ra
tio

ns
Sa

vi
ng

(%
)

Fig. 2. Relative number of operations savings (yellow = SMC vs Brute Force, blue = cap (5%) vs Brute Force).

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700

0

0.5

1

Program Number

Q
ua

lit
y

of
se

t

Fig. 3. Relative quality of sets of hard-to-kill mutants (yellow = SMC, green = random).

threat cannot be completely addressed, we worked with kill
matrices generated from real programs and with mutants and
tests generated by state-of-the-art techniques.

Finally, concerning threats to construct validity, the main
concern is whether the kill matrices used in our work can be
representative of real programs. Fortunately, our kill matrices
where generated from real programs, so they are indeed repre-
sentative of real kill matrices.

VI. CONCLUSIONS

Mutation testing is one of the main techniques in Software
Testing. In order to perform a good and efficient mutation
process, it is necessary to filtrate the mutants. In this work,
we focused on detecting hard-to-kill mutants. As the concept
of hard-to-kill mutants is too abstract, we developed a Swarm
Intelligence Algorithm in order to choose a set of hard-to-kill

mutants from the set of all the mutants of a program. We
performed several experiments to prove the efficiency of our
algorithm when compared to other approaches to the concept
of hard-to-kill mutants. We showed that our SMC is a preferable
option to detect those hard-to-kill mutants.

For future work we have identified several lines. First, we
would like to assess how the hard-to-kill mutants set changes
when modifying the bound for choosing the hard-to-kill mu-
tants in the main loop of our algorithm. Second, we would like
to compare the efficiency of our algorithm in a weak mutation
scenario, compared to the current strong mutation scenario we
presented here. Third, we would like to compare our approach
to other Swarm Intelligence Algorithms like Particle Swarm
Optimisation [26] and its variations. Fourth, we would like to
assess how related are the hard-to-kill mutants determined by



our algorithm and the set of fault revealing mutants [37]. Fifth,
we would like to deal with bigger sets of mutants by including
recent approaches to mutation testing [11], [15], [18] and our
recent work on heuristics based on Information Theory [24].
Finally, we would like to take previous research as initial
step to generalise the framework and measures to deal with
asynchronous [21], [27], [29], [30], distributed [8], [16], [22],
[23], IoT [14], [39] and cloud [4], [5], [12], [35] systems.

REFERENCES

[1] A. T. Acree, A. T. Budd, R. Demillo, R. J. Lipton, and F. G. Sayward.
Mutation analysis. Technical Report GIT-ICS-79/08, Georgia Institute of
Technology, 1979.

[2] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 2nd edition, 2017.

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle
problem in software testing: A survey. IEEE Transactions on Software
Engineering, 41(5):507–525, 2015.

[4] A. Bernal, M. E. Cambronero, A. Núñez, P. C. Cañizares, and V. Valero.
Improving cloud architectures using UML profiles and M2T transfor-
mation techniques. The Journal of Supercomputing, 75(12):8012–8058,
2019.

[5] A. Bernal, M. E. Cambronero, V. Valero, A. Núñez, and P. C. Cañizares.
A framework for modeling cloud infrastructures and user interactions.
IEEE Access, 7:43269–43285, 2019.

[6] C. Blum and D. Merkle, editors. Swarm Intelligence: Introduction and
Applications. Springer, 2008.

[7] M. Böhme and A. Roychoudhury. CoREBench: studying complexity
of regression errors. In 23rd Int. Symposium on Software Testing and
Analysis, ISSTA’14, pages 105–115. ACM Press, 2014.

[8] J. Boubeta-Puig, G. Dı́az, H. Macià, V. Valero, and G. Ortiz. MEdit4CEP-
CPN: An approach for complex event processing modeling by prioritized
colored Petri nets. Information Systems, 81:267–289, 2019.

[9] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In 8th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI’08, pages 209–224. USENIX Association, 2008.

[10] A. Camacho, M. G. Merayo, and M. Núñez. Collective intelligence and
databases in eHealth: A survey. Journal of Intelligent & Fuzzy Systems,
32(2):1485–1496, 2017.

[11] P. C. Cañizares, A. Núñez, and M. G. Merayo. Mutomvo: Mutation
testing framework for simulated cloud and HPC environments. Journal
of Systems and Software, 143:187–207, 2018.

[12] P. C. Cañizares, A. Núñez, J. de Lara, and L. Llana. MT-EA4Cloud:
A methodology for testing and optimising energy-aware cloud systems.
Journal of Systems and Software, 163:110522:1–110522:25, 2020.

[13] T. T. Chekam, M. Papadakis, T. F. Bissyandé, Y. Le Traon, and K. Sen.
Selecting fault revealing mutants. Empirical Software Engineering,
25(1):434–487, 2020.

[14] D. Corral-Plaza, I. Medina-Bulo, G. Ortiz, and J. Boubeta-Puig. A stream
processing architecture for heterogeneous data sources in the internet of
things. Computer Standards & Interfaces, 70:103426:1–103426:13, 2020.

[15] P. Delgado-Pérez, Louis M. Rose, and I. Medina-Bulo. Coverage-based
quality metric of mutation operators for test suite improvement. Software
Quality Journal, 27(2):823–859, 2019.

[16] G. Dı́az, H. Macià, V. Valero, J. Boubeta-Puig, and F. Cuartero. An
intelligent transportation system to control air pollution and road traffic
in cities integrating CEP and colored Petri nets. Neural Computing and
Applications, 32(2):405–426, 2020.

[17] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and
oracles. IEEE Transactions on Software Engineering, 38(2):278–292,
2012.

[18] P. Gómez-Abajo, E. Guerra, J. de Lara, and M. G. Merayo. A tool for
domain-independent model mutation. Science of Computer Programming,
163:85–92, 2018.

[19] D. Griñán and A. Ibias. Generating tree inputs for testing using evolu-
tionary computation techniques. In 22nd IEEE Congress on Evolutionary
Computation, CEC’20, pages E–24267: 1–8. IEEE Computer Society,
2020.

[20] D. Griñán, A. Ibias, and M. Núñez. Grammar-based tree swarm opti-
mization. In 2019 IEEE Int. Conf. on Systems, Man and Cybernetics,
SMC’19, pages 76–81. IEEE Press, 2019.

[21] R. M. Hierons, M. G. Merayo, and M. Núñez. An extended framework for
passive asynchronous testing. Journal of Logical and Algebraic Methods
in Programming, 86(1):408–424, 2017.

[22] R. M. Hierons, M. G. Merayo, and M. Núñez. Bounded reordering in the
distributed test architecture. IEEE Transactions on Reliability, 67(2):522–
537, 2018.

[23] R. M. Hierons and M. Núñez. Implementation relations and probabilistic
schedulers in the distributed test architecture. Journal of Systems and
Software, 132:319–335, 2017.

[24] A. Ibias, R. M. Hierons, and M. Núñez. Using Squeeziness to test
component-based systems defined as Finite State Machines. Information
& Software Technology, 112:132–147, 2019.

[25] Y. Kamei and E. Shihab. Defect prediction: Accomplishments and future
challenges. In Leaders of Tomorrow Symposium: Future of Software
Engineering, FOSE@SANER’16, pages 33–45. IEEE Computer Society,
2016.

[26] J. Kennedy and R. Eberhart. Particle swarm optimization. In 3rd Int.
Conf. on Neural Networks, ICNN’95, pages 1942–1948. IEEE Computer
Society, 1995.

[27] R. Lefticaru, R. M. Hierons, and M. Núñez. Implementation relations
and testing for cyclic systems with refusals and discrete time. Journal of
Systems and Software, 170:110738:1–110738:20, 2020.

[28] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes
to learn defect predictors. IEEE Transactions on Software Engineering,
33(1):2–13, 2007.

[29] M. G. Merayo, R. M. Hierons, and M. Núñez. Passive testing with
asynchronous communications and timestamps. Distributed Computing,
31(5):327–342, 2018.

[30] M. G. Merayo, R. M. Hierons, and M. Núñez. A tool supported
methodology to passively test asynchronous systems with multiple users.
Information & Software Technology, 104:162–178, 2018.

[31] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing.
John Wiley & Sons, 3rd edition, 2011.

[32] N. T. Nguyen, D. Hwang, and E. Szczerbicki. Computational collective
intelligence for enterprise information systems. Enterprise IS, 13(7-
8):933–934, 2019.

[33] N. T. Nguyen, E. Szczerbicki, B. Trawinski, and V. D. Nguyen. Collective
intelligence in information systems. Journal of Intelligent and Fuzzy
Systems, 37(6):7113–7115, 2019.

[34] V. D. Nguyen and N. T. Nguyen. Intelligent collectives: Theory,
applications, and research challenges. Cybernetics and Systems, 49(5-
6):261–279, 2018.

[35] A. Núñez, P. C. Cañizares, M. Núñez, and R. M. Hierons. TEA-
Cloud: A formal framework for testing cloud computing systems. IEEE
Transactions on Reliability (in press), 2020.

[36] A. J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of
selective mutation. In 15th Int. Conf. on Software Engineering, ICSE’93,
pages 100–107. IEEE Computer Society / ACM Press, 1993.

[37] M. Papadakis, T. T. Chekam, and Y. Le Traon. Mutant quality indicators.
In 13th Int. Workshop on Mutation Analysis, MUTATION’18, ICST
Workshops, pages 32–39. IEEE Computer Society, 2018.

[38] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman.
Mutation testing advances: An analysis and survey. volume 112 of
Advances in Computers, pages 275 – 378. Elsevier, 2019.

[39] J. Roldán, J. Boubeta-Puig, J. L. Martı́nez, and G. Ortiz. Integrating
complex event processing and machine learning: An intelligent architec-
ture for detecting iot security attacks. Expert Systems with Applications,
149:113251:1–113251:22, 2020.

[40] S. Selvaraj and E. Choi. Survey of swarm intelligence algorithms. In
3rd Int. Conf. on Software Engineering and Information Management,
ICSIM’20, pages 69–73. ACM Press, 2020.

[41] S. H. Tan, J. Yi, Y., S. Mechtaev, and A. Roychoudhury. Codeflaws: a
programming competition benchmark for evaluating automated program
repair tools. In 39th Int. Conf. on Software Engineering, ICSE’17
Companion Volume, pages 180–182. IEEE Computer Society, 2017.

[42] W. Visser. What makes killing a mutant hard. In 31st IEEE/ACM Int.
Conf. on Automated Software Engineering, ASE’16, pages 39–44. ACM
Press, 2016.

[43] W. E. Wong and A. P. Mathur. Reducing the cost of mutation testing: An
empirical study. Journal of Systems and Software, 31(3):185–196, 1995.


