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Abstract

Context: Mutual Information is an information theoretic measure designed to quantify the amount of similarity between
two random variables ranging over two sets. In this paper, we adapt this concept and show how it can be used to select
a good test suite to test from a Finite State Machine (FSM) based on a maximise diversity approach.
Objective: The main goal of this paper is to use Mutual Information in order to select test suites to test from FSMs and
evaluate whether we obtain better results, concerning the quality of the selected test suite, than current state-of-the-art
measures.
Method: First, we defined our scenario. We considered the case where we receive two (or more) test suites and we have
to choose between them. We were interested in this scenario because it is a recurrent case in regression testing. Second,
we defined our notion based on Mutual Information: Biased Mutual Information. Finally, we carried out experiments
in order to evaluate the measure.
Results: We obtained experimental evidence that demonstrates the potential value of the measure. We also showed
that the time needed to compute the measure is negligible when compare to the time needed to apply extra testing.
We compared our measure with a state-of-the-art test selection measure and showed that our proposal outperforms it.
Finally, we have compared our measure with a notion of transition coverage. Our experiments showed that our measure
is slightly worse than transition coverage, as expected, but its computation is 10 times faster.
Conclusion: Our experiments showed that Biased Mutual Information is a good measure for selecting test suites,
outperforming the current state-of-the-art measure, and having a (negative) correlation to fault coverage. Therefore, we
can conclude that our new measure can be used to select the test suite that is likely to find more faults. As a result, it
has the potential to be used to automate test generation.
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1. Introduction

Software testing [1, 2] is the main technique to val-
idate complex systems with the goal of increasing their
reliability. Testing is a time consuming part of software
development; it has been observed that testing can cost
more than 50% of the development budget [2]. Therefore,
it is important to devise methodologies that reduce the
time taken without notably decreasing effectiveness. A
good starting point is to reduce the number of tests (the
size of the test suite) that we apply to the System Under
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Test (SUT)1. Therefore, we require approaches that select
a test suite that is small enough to be used in practice
and is likely to be effective in finding faults. We can reph-
rase this as the problem of maximising the expected test
effectiveness for a given cost/time. Since the cost of test
execution typically depends on the test suite size, we re-
duce this to the problem of choosing amongst different test
suites, that have the same size, the one that is most likely
to find faults.

The main aim of the work presented in this paper is
to devise measures that can help testers, or testing tools,
to choose between alternative test suites. We focus on the
case where we want to choose between different finite test
suites that have the same number of inputs (and so, most
likely, the same execution cost). The problem studied is
relevant in a number of contexts. For example, we might
build a test suite in an incremental manner. When choos-
ing a next test case to add we will be comparing test suites

1The number of tests needed to exhaustively test even the
simplest systems is exorbitant. For example, exhaustive testing of
a black-box implementation of a method adding two numbers on a
32-bit machine needs around 8 · 1028 tests.

Preprint submitted to Information and Software Technology 17th March 2021



of the same size (the current test suite extended by the dif-
ferent test cases that could be added) and will choose the
test suite that we expect to be most effective. Thus, in-
cremental approaches to building a test suite involve the
comparison of test suites of the same size. Measures that
compare test suites might also be used to help guide test
suite generation since, for example, the measures could
form fitness functions to be used within a search-based
approach. The problem is also relevant in the context of
regression testing, where we typically have to repeatedly
use a test suite. Ideally, one executes the entire test suite
in regression testing but often this is too expensive, with
this having led to a significant body of work regarding
the problem of selecting a ‘best’ subset (see, for example,
[3, 4, 5]).

This paper considers the situation in which the SUT is
a black-box; we know its input and output alphabets but
have no additional information. As a result, in choosing
a test suite we cannot use information about the internal
structure of the SUT. A side-effect of this is that we will not
have access to information about the coverage of the SUT

achieved by a test suite. However, we assume that we do
have a specification of the system that we want to build.
In order to simplify the presentation, we assume that the
specification is given by a Finite State Machine (FSM) but
the approach can be adapted to deal with other state-based
formalisms, in particular, those containing data.

The choice of FSMs as a formalisation was motivated
by the fact that they have been used in a number of areas.
The early work largely concerned protocol conformance
testing [6, 7] and hardware (processor) testing, since pro-
cessor designs are FSMs (see, for example, [8]). FSM-based
techniques have also been used in testing web-services and
web-based applications [9, 10]. It is important to observe
that it is not necessary for the user to produce an FSM spe-
cification; the specification may be in some other state-
based formalism, such as state-charts, with a model be-
ing mapped to an FSM that represents its semantics (pos-
sibly after some abstraction). This makes FSM-based ap-
proaches applicable to a wide range of state-based spe-
cifications, such as those used in the embedded systems
industry. The value of such an approach was also demon-
strated when used to test a number of Microsoft Windows
protocols [11]. Recent work has shown that FSM-based
test generation techniques can be applied when testing
from a class of rather more expressive models (reactive
I/O-state-transition systems, RIOSTS) [12]. The benefit
is that RIOSTS can also be used with a range of embedded
systems [12], with the approach having been evaluated on
part of the European Train Control System and also an
airbag controller [13]. Finally, it is worth mentioning that
there are several tools that can be used to specify and ana-
lyse FSMs (for example, fsmlib-cpp2, automatalib [14] and
OpenFST [15]).

2https://github.com/agbs-uni-bremen/fsmlib-cpp

This paper describes a novel information theoretic meas-
ure and proposes its use to inform the choice between
test suites. Specifically, we define a notion, Biased Mutual
Information (BMI), inspired by Mutual Information [16],
and use it to compare test suites of similar length. The
idea behind the definition of BMI is that two tests that
share a large amount of information will be more likely to
explore the same paths of an FSM, applying the same in-
puts and expecting the same outputs. The intended goal
of BMI is thus to indirectly maximise diversity and is mo-
tivated by it having been widely recognised that diversity
has a strong impact on test quality [17, 18, 19, 20]. Our
hypothesis was that a test suite with lower BMI will tend
to be more effective (be more likely to find faults) because
lower BMI implies that the tests in the test suite share less
information and, therefore, they explore more behaviours
of the FSM. In order to evaluate this hypothesis, we used
mutants, that simulate faults. Specifically, given an FSM

and a pair of test suites, we checked whether the test suite
with lower BMI killed more mutants. Our experiments
revealed that minimising BMI led to test suites that kill
more mutants most of the time. Moreover, we obtained
a (negative) correlation between BMI and mutation score.
We also found that the time needed to compute BMI is
negligible when compared to the time typically needed to
apply a single test suite. The consequence of this fact is
that it will often be worth spending some time to decide
between two test suites, instead of applying both of them,
if, as usual, resources and time are scarce. These results
suggest that BMI can be used to guide testing towards test
suites that are likely to be more effective.

Interestingly, in additional experiments it was found
that BMI outperformed a previous information theoretic
approach, the test set diameter (TSDm) measure [21],
when selecting between two randomly generated test suites.
We also compared our measure with a notion of transition
coverage. Specifically, we explored the question of which
measure was most effective when used to choose between
two test suites: choosing the test suite with smaller BMI or
the test suite with higher transition coverage. Since trans-
ition coverage has more information available (the states
from which inputs are applied), it was not surprising that
transition coverage was slightly more effective. However,
BMI was found to be considerably faster. As a result, in
the context of testing from an FSM, there is a trade-off
between effectiveness and speed. Note that, although the
comparison with transition coverage was interesting, the
aim of the work described in this paper was to produce
a general method that can be used in a range of scen-
arios. This includes scenarios in which, for example, we
do not have a complete specification but we can estimate
the frequency of input/output pairs, which is the only in-
formation required to compute BMI. There is potential to
use (random) sampling to estimate such frequencies.

Although it will become clearer when we give the formal
definition of BMI, we will briefly explain why we need
a bias in our notion. Essentially, in order to compute
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our measure we need to know the frequency of occur-
rence of each input/output pair in the underlying FSM.
Since the formulation of Mutual Information applies a log-
arithm over that frequency, if we have only one occur-
rence of an input/output pair (i, o) in the FSM, then we
obtain log(1) = 0. This produces two undesirable con-
sequences. First, we obtain the smallest possible value for
(i, o) while we want to give it the highest weight. Second,
when we combine this weight with other values by mul-
tiplying them, we obtain 0, which leads to final values
that are uninformative. The introduction of a bias solves
this problem.

The rest of the paper is structured as follows. In Sec-
tion 2 we review basic concepts and notation used in the
paper. In Section 3 we present related work. In Section 4
we formally define our measure and explore some of its
properties. Section 5 reports on the experiments and Sec-
tion 6 discusses threats to validity. In Section 7 we discuss
some decisions that we took during the research presented
in this paper. Finally, in Section 8 we provide conclusions
and discuss future work.

2. Preliminaries

In this paper, systems will be modelled as Finite State
Machines (FSMs). In order to define an FSM, we first in-
troduce some notation. Given set A, A∗ denotes the set
of finite sequences of elements of A; A+ denotes the set of
non-empty finite sequences of elements of A; and ǫ ∈ A∗

denotes the empty sequence. We let |A| denote the size of
set A. Given a sequence σ ∈ A∗, |σ| denotes its length.
Given a sequence σ ∈ A∗ and a ∈ A, we have that σa
denotes the sequence σ followed by a and aσ denotes the
sequence σ preceded by a.

Throughout this paper we let I be the set of input
actions and O be the set of output actions. It is important
to differentiate between input actions and inputs of the
system. An input of a system will be a non-empty sequence
of input actions, that is, an element of I+ (similarly for
outputs and output actions).

An FSM is a (finite) labelled transition system in which
every transitions has a label in the form of an input/output
pair (a pair containing an input action and an output ac-
tion). We use this formalism to define specifications.

Definition 1. A Finite State Machine (FSM) is represen-
ted by a tuple M = (Q, qin, I,O, T ) in which Q is a finite
set of states, qin ∈ Q is the initial state, I is a finite
set of input actions, O is a finite set of output actions,
and T ⊆ Q × (I × O) × Q is the transition relation. The
meaning of a transition (q, (i, o), q′) ∈ T , also denoted by
(q, i/o, q′), is that if M receives input action i when in
state q then it can move to state q′ and produce output ac-
tion o. We write (i, o) ∈m M to denote that the pair (i, o)
appears in m transitions of M .

We say that M is deterministic if for all q ∈ Q and
i ∈ I there exists at most one pair (q′, o) ∈ Q × O such
that (q, i/o, q′) ∈ T .

We assume that FSMs are deterministic; this makes the
work compatible with the previously devised information
theoretic (white-box) TSDm measure [21]. In particular,
it allows us to run experiments that compare the proposed
approach with TSDm.

An FSM can be represented by a diagram in which nodes
represent states of the FSM and transitions are represented
by arcs between the nodes. We use an incoming edge with
no source to denote the initial state. In our case, all states
are final as long as they are reachable from the initial state.

We will assume the minimal test hypothesis [22]: the
SUT can be modelled as an (unknown) object described
in the same formalism as the specification (here, an FSM).
Note that we do not need to have access to this description;
we are in a black-box testing framework and only assume
the existence of such an FSM. In principle, we could weaken
this hypothesis to simply assume that each time the SUT

receives a sequence of input actions, it returns a sequence
of output actions.

Our main goal while testing is to decide whether the
behaviour of an SUT conforms to the specification of the
system that we would like to build. In order to detect
differences between specifications and SUTs, we need to
compare their behaviours and the main notion to define
such behaviours is given by the concept of a trace.

Definition 2. Let M = (Q, qin, I,O, T ) be an FSM, σ =
(i1, o1) . . . (ik, ok) ∈ (I × O)∗ be a sequence of pairs and
q ∈ Q be a state. We say that M can perform σ from q if
there exist states q1 . . . qk ∈ Q such that for all 1 ≤ j ≤ k
we have (qj−1, ij/oj , qj) ∈ T , where q0 = q. If q = qin then
we say that σ is a trace of M . We denote by traces(M)
the set of traces of M . Note that ǫ ∈ traces(M) for every
FSM M .

Next we define the notion of test. As previously ex-
plained, a test is a sequence of (input action, output ac-
tion) pairs. A test suite will be a set of tests.

Definition 3. Let M = (Q, qin, I,O, T ) be an FSM. We
say that t = (i1, o1) . . . (ik, ok) ∈ (I × O)+ is a test for
M if t ∈ traces(M). The length of t is the length of
the sequence, that is, |t| = k. In addition, the sequence of
input actions of t is λ = i1 . . . ik and the sequence of output
actions of t is µ = o1 . . . ok. We will sometimes use the
notation t = (λ, µ) ∈ (I+ × O+). We write (i, o) ∈ t to
denote that the pair (i, o) appears in the test t; (i, o) ∈n t
denotes that the pair (i, o) appears n times in the test t.

A test suite for M is a set of tests for M . Given a test
suite T = {t1, . . . , tn}, the length of the test suite is the
sum of the lengths of its tests, that is, |T | =

∑

i=1,...,n |ti|.
Let t = (λ, µ) be a test for M . We say that the applic-

ation of t to an FSM M ′ fails if there exists µ′ such that
(λ, µ′) ∈ traces(M ′) and µ 6= µ′. Similarly, let T be a
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test suite for M . We say that the application of T to an
FSM M ′ fails if there exists t ∈ T such that the application
of t to M ′ fails.

Intuitively, a test (λ, µ) for M denotes that the applic-
ation of the sequence of input actions λ to a correct system
(with respect to M) should lead to the sequence of output
actions µ. Note that if we allowed non-determinism, then
the previous inequality must be appropriately replaced to
express that a behaviour of the SUT must be one of those of
the specification, and we will have a notion of conformance
similar to ioco [23].

The concept of Test Set Diameter (TSDm) [21], which
will be used as the state-of-the-art measure to compare
with, is derived from Kolmogorov complexity [24]. The
Kolmogorov complexity of a string is the length of the
shortest program that produces that string. It has been
shown that Kolmogorov complexity can be approximated
using Normalised Compression Distance [25].

Definition 4. Let x and y be two strings and C(x) be the
length of the string x after being compressed by a chosen
compression program. We denote by ncd(x, y) the Norm-
alised Compression Distance of x and y and we define it
as

C(xy)−min{C(x), C(y)}

max{C(x), C(y)}

where xy denotes the concatenation of x and y.

The previous distance can be naturally extended to
deal with multisets of strings.

Definition 5. Let X be a multi-set of strings with at least
two elements and C(x) be the length of the string x ∈ X
after being compressed by a chosen compression program.
We denote by NCD(X) the Normalised Compression Dis-
tance of X and we define it as

{

ncd(x1, x2) if X = {|x1, x2|}

max{NCD1(X),maxY⊂X{NCD(Y )}} otherwise

where

NCD1(X) =
C(X)−minx∈X{C(x)}

maxx∈X{C(X\{x})}

and where C(X) is the length of the compression of the
concatenation of the strings belonging to X in any specific
order as long as we use it for all the concatenations.

The Test Set Diameter of a test suite is defined in terms
of the NCD of a (multi-)set of tests. We can consider
different multisets for computing this metric. For example,
we could use the multiset of test inputs (Input-TSDm), the
multiset of test outputs (Output-TSDm) or even the multi-
set of execution traces (Trace-TSDm). In this paper, as
recommended in the original work [21], we used ITSDm to
drive test selection.

It is important to note that Test Set Diameter is the
current baseline for the use of Information Theory to dir-
ect the generation and selection of test suites in black-
box testing. An extensive study [26] found that Test Set
Diameter outperformed many alternatives. Specifically,
the study shows that, for 5 well-known programs (Grep,
Sed, Flex, Make and GZip), ITSDm is the best alternat-
ive, obtaining fault detection rates between 85% and 95%.
Moreover, they observed that ITSDm is able to compete
with white-box techniques, obtaining differences in fault
detection rates of less than 2%, which is remarkable given
the fact that ITSDm, as a black-box technique, works with
less information than white-box techniques.

Finally, we recall the classical definition of mutual in-
formation [16], which we use as an inspiration for our meas-
ure.

Definition 6. Let A and B be two sets and ξA and ξB be
two discrete random variables ranging, respectively, over
A and B. We denote by I(ξA; ξB) the mutual information
of ξA and ξB and we define it as

∑

b∈B

∑

a∈A

σξA,B
(a, b) · log2

σξA,B
(a, b)

σξA(a) · σξB (b)

where ξA,B is the joint probability distribution, defined as
usual, of ξA and ξB.

3. Related Work

There are many techniques for generating a test suite
from an FSM specification. Possibly the first work in this
area was the seminal paper by Moore, published in 1956,
that described an overall framework [27]. Later, in 1964,
Hennie [28] published a test generation algorithm. Hen-
nie’s algorithm required the specification to be a determ-
inistic, completely-specified FSM that has a special type of
sequence, called a distinguishing sequence3. Later, a more
general test generation algorithm was published [29, 30],
with this only requiring that the specification is a determ-
inistic, completely-specified FSM4.

The area of FSM-based test generation has been exten-
ded in a number of directions. The techniques mentioned
above are complete in the sense that they return test suites
that determine correctness as long as the SUT is equival-
ent to an (unknown) FSM in some well-defined fault do-
main; the fault domain typically places an upper bound
on the number of states of the minimal FSM that repres-
ents the behaviour of the SUT. A number of other complete
test generation algorithms that have been devised, typic-
ally with a focus on producing relatively small complete

3A distinguishing sequence is an input sequence that produces
different output sequences from the different states of the FSM.

4It also requires the specification to be minimal but any determ-
inistic, completely-specified FSM can be converted into an equivalent
minimal deterministic, completely-specified FSM.
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Figure 1: Example of FSM.

test suites (see, for example, [31, 32, 33]). There are also
complete techniques for testing from other classes of FSM
such as (possibly non-deterministic) partial FSMs (see, for
example, [34, 35, 36]), FSMs representing distributed sys-
tems (see, for example, [37, 38]), probabilistic FSMs (see,
for example, [39, 40]), and stochastic FSMs (see, for ex-
ample, [41]). It is not always feasible to produce and use
complete test suites and so there are also approaches that
aim to cover the FSM specification in some way (see, for
example, [42]). The interest in FSM-based testing is motiv-
ated by the ability of FSMs to suitably model many classes
of system, possibly after an abstraction has been applied.
Sometimes, however, it does not make sense to abstract
out data (for example, where this data determines which
transitions can be executed). There has thus been interest
in testing from extended FSMs (EFSMs), which allow data
(see, for example, [43, 44, 45, 46, 47]), including work on
testing from Stream X-machines [48].

Interestingly, although there has been much work on
testing from both FSMs and EFSMs, it appears that notions
of diversity have not been utilised in these areas. A poten-
tial advantage of diversity-based approaches is that they
can be used with any test budget: given a bound on the
overall test execution cost/time available, one can aim to
find the most diverse test suite whose cost does not exceed
this bound. Diversity-based approaches are thus poten-
tially extremely flexible and it should be possible to apply
them with FSMs, EFSMs or FSMs extended with other fea-
tures such as probability and time. However, as a first step
this paper restricts attention to FSMs.

Information Theory has already been used in testing
[49, 50, 51, 52, 53, 54, 55, 56, 57, 58]. In particular, the
problem of choosing among different test suites has been
addressed before [21, 17, 59]. However, as far as we are
aware, this is the first work in which a measure inspired
by Information Theory has been used to choose between
test suites in a black-box testing framework, in particular,
in testing from FSMs.

4. Biased Mutual Information

As previously explained, our goal is to increase test
suite diversity with the hope that this will be reflected
in the capability of the test suite to detect faults. Lower
values of mutual information should be associated with
higher diversity. We will consider both the input part of

the test and the expected output with the goal of also
increasing output diversity [60]. We can utilise output as
well as input since we have a specification.

The intuition behind maximising diversity as a goal is
very simple. Assume that we have an FSM with a set of
input/output pairs labelling its transitions. If we select
two different input/output pairs, and observe no failure,
then we know that this selection traversed two different
transitions of the FSM that represents the SUT. However,
selecting one input/output pair twice leads to a scenario
where we might traverse the same transition of the FSM

twice (in particular, FSMs can have loops and so can return
to a state met earlier). One might argue that this happens
with probability 1

m
, where m is the number of times that

the input/output pair labels a transition of the FSM; even
for large m, we have a non-zero probability of traversing
a transition more than once. This scenario also shows
that we have to be careful when looking for measures of
diversity, as the probability decreases when m increases.
For example, the cases where m = 2 should be rather
different to the case wherem = 200. Therefore, one should
not automatically discard test suites where a pair appears
more than once. Instead, we should take into account the
number of times a label appears in the FSM specification.
We illustrate this with a simple example.

Example 1. Consider the FSM given in Figure 1 and its
test suites

T1 = {(i2i4, o1o4), (i1i2, o1o2)}

and
T2 = {(i1i3, o1o3), (i1i2, o1o2)}

On the one hand, T1 has a mutual information of 0. Even
though the input action i2 appears twice in the test suite,
we know that the pairs (i2, o1) and (i2, o2) represent dif-
ferent behaviours. On the other hand, T2 has a non-zero
mutual information (applying the classical formula given
in Definition 6 we have that this value is equal to 0.53).
Therefore, a measure based on mutual information should
choose the first test suite.

Initially, we would like to compute the mutual inform-
ation of two tests. Each test is a sequence of input/output
pairs. If we abstract out the position of the pairs in the se-
quence, we obtain a set of pairs. Given two tests t1 and t2,
in order to compute the mutual information I(ξt1 ; ξt2) we
need a definition of the probability distribution σξt(x) (see
Definition 6). The first attempt was to give an intuitive
definition of σ in which we used the uniform distribution
as the probability distribution in the mutual information
formula. That is, if a label appears in m transitions of
the machine, then the probability of this label will be 1

m
;

the probability that the pair x corresponds to a specific
transition of specification M . Also, we replaced the no-
tion of joint probability with a notion of composition. In
this, if we have two transitions with the same input/output
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pair (i, o), then the composition will return the common
weight, that is, the weight of (i, o); otherwise, we multiply
the weights. Alternatively, this composition can be seen
as the product of the weights of each element reweighed
by the number of repetitions of the input/output pair in
the FSM.

Unfortunately, this choice does not induce a probabil-
ity distribution over the pairs in the tests and so it is not
a mathematically valid formulation of the mutual inform-
ation between two tests. As a result, there is a need to
explore alternatives. After several possibilities were con-
sidered (discussed in Section 7), we found that none of
them consistently gave better results, so we kept the ini-
tial intuition to not restrict ourselves to random variables.
Then, in the next definition the different occurrences of σ
do not refer to probability distribution functions, but we
keep this notation to retain the structure of the original
formulation. As a result of the above, we will use the term
σt(x), even though t does not explicitly appear in the right
hand side of the following formulae, because t is an impli-
cit parameter; σt(x) is only defined for x if x ∈ t. In the
rest of this section, recall that we write (i, o) ∈m M to
denote that the pair (i, o) appears in m transitions of M
and (i, o) ∈n t denotes that the pair (i, o) appears n times
in the test t.

Definition 7. Let M = (Q, qin, I,O, T ) be an FSM, t be
a test for M and x ∈ I × O be an input/output pair such
that x ∈ t. We let:

σt(x) =







1

m
if x ∈m M, m ≥ 1

0 otherwise

We define the composition of two tests t1, t2 of M , for
input/output pairs x1 ∈ t1, x2 ∈ t2, as:

σt1,t2(x1, x2) =



















1

m1
·

1

✟✟m2
·✟✟m2 if x1 = x2

1

m1
·

1

m2
otherwise

where x1 ∈m1
M and x2 ∈m2

M . In the first case, note
that m1 = m2 because we are looking for the same in-
put/output pair in M . Also note that m1 and m2 are
greater than zero because we request x1 ∈ t1 and x2 ∈ t2
to appear in M .

Finally, we redefine the mutual information of two tests
as:

I(t1; t2) =
∑

x1∈t1

∑

x2∈t2

σt1,t2(x1, x2) · log2
σt1,t2(x1, x2)

σt1(x1) · σt2(x2)

Note that the intuition assumes a uniform distribu-
tion over the set of transitions of M with the same label.
We could choose another distribution for those probabil-
ities by, for example, increasing the probability associated
with transitions that are reached from the initial state

after fewer transitions. However, this would complicate
the computation of the measure and preliminary experi-
ments did not show a significant improvement. Therefore,
if the real distribution is not known then we use a uniform
distribution in order to aid simplicity. Note that uniform
distributions also have desirable properties (in particular,
this distribution maximises entropy [61]). Naturally, we
should not use uniform distributions if we have evidence
that they are inappropriate (i.e. because using the true
distribution is known to lead to better results). For ex-
ample, this is the case if we have probabilistic user models
indicating the probabilities with which users choose in-
puts [62]. Next we give a result allowing us to simplify the
formulation.

Lemma 1. Let M be an FSM and t1, t2 be tests for M .
We have

I(t1; t2) =
∑

x∈t2

nx ·
log2(mx)

mx

where mx is such that x ∈mx
M and nx is such that x ∈nx

t1.
Proof

In order to compute the terms of the sum defining mutual
information, that is,

σt1,t2(x1, x2) · log2
σt1,t2(x1, x2)

σt1(x1) · σt2(x2)
(1)

we will distinguish two cases: x1 = x2 and x1 6= x2. First,
let us consider x1 = x2. Note that σt1(x1) = σt2(x2),
because these values depend only on M and x. In addition,
the composition of an element of a test and itself is the
probability of the element (as we stated in Definition 7).
Therefore, σt1,t2(x, x) = σt1(x). Now, taking into account
Definition 7 we have that if x1 = x2 then the previous term
is equal to

1

mx

·
1

mx

·mx · log2







1
mx

· 1
mx

·mx

1

mx

·
1

mx






=

1

mx

· log2







1
1

mx







and, simplifying, we conclude that if x1 = x2, then the
term given in Equation 1 is equal to

log2(mx)

mx

Now, let us consider x1 6= x2. In this case, σt1,t2(x1, x2) =
σt1(x1) · σt2(x2) and, therefore, the term given in Equa-
tion 1 becomes equal to 0 because we have log2(1) as one
of the factors.

Putting together these two cases in the Mutual Informa-
tion formula given in Definition 7, we obtain the following
expression:

I(t1; t2) =
∑

x2∈t2

∑

x1∈t1
x1=x2

log2(mx)

mx
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Figure 2: Measure comparison plot.

Note that in the inner sum, for a given x2, we are always
adding the same value. Therefore, we can simplify it as a
multiplication of that value times the number of times it is
added. This last factor corresponds to the number of times
x1 = x2 appears in the test t1, that is, the value nx such
that x2 ∈nx

t1. This results in the following expression:

I(t1; t2) =
∑

x2∈t2

nx ·
log2(mx)

mx

that can easily be rewritten as:

I(t1; t2) =
∑

x∈t2

nx ·
log2(mx)

mx

where mx is such that x ∈mx
M and nx is such that x ∈nx

t1. �

An important remark about this formula is that it is
not monotonic and it is equal to 0 if all the transitions of
the specification have different input/output pairs. Since
we are interested in values that are useful when compar-
ing test suites (therefore, we need monotonicity and we
should avoid “division by zero”), we solve this problem
with a simple transformation. The dashed curve in Fig-
ure 2 shows the behaviour of the previous formula. We
make a small translation in the X axis of the logarithm of
the formula, so that its behaviour is the one given by the
solid curve.

Definition 8. Let M be an FSM and t1, t2 be tests for M .
We say that the biased mutual information (bmi) of t1 and
t2 is given by

bmi(t1; t2) =
∑

x∈t2

nx ·
log2(mx + 1)

mx

where mx is such that x ∈mx
M and nx is such that x ∈nx

t1.

In the following example we illustrate the importance
of this translation.

b
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Figure 3: Another example of FSM.

Example 2. Consider the FSM M depicted in Figure 3
and the test suites

T1 = {t1 = (i2i4i4, o2o4o4), t2 = (i3i2i1, o3o2o1)}

and

T2 = {t3 = (i3i1i1, o3o1o1), t4 = (i3i2i2, o3o2o2)}

Note that the only pair appearing in both t1 and t2 is
(i2, o2) (this input/output pair appears 9 times in M); sim-
ilarly, the only common pair for t3 and t4 is (i3, o3) (this
appears once in M). The (biased) mutual information of
each test suite can be computed as follows:

bmi(t1; t2) =
log2(9 + 1)

9
=

log2(10)

9
≈ 0.3691

bmi(t3; t4) =
log2(1 + 1)

1
=

log2(2)

1
= 1

I(t1; t2) =
log2(9)

9
≈ 0.3522

I(t3; t4) =
log2(1)

1
= 0

Therefore, the first test suite would be better if we con-
sider biased mutual information, but would be worse if
we consider mutual information. In principle, we should
prefer T1 because it is more likely that it will check more
transitions than T2. In fact, in this example we know that
the second test suite will traverse the same transition twice.

The biased mutual information between two tests will
be used as the basis of a measure for a test suite. The
idea is that we need to compute the cumulative amount of
biased mutual information between all the pairs of tests.
Given a test suite T , this will be denoted by α(T ) in the
definition of the Biased Mutual Information of T . There-
fore, if we have a specification M and a test suite T =
{t1, . . . , tk}, then we apply Definition 8 to all the pairs of
tests included in T :

α(T ) =
∑

i=1,...,k

∑

j=i+1,...,k

∑

x∈ti

nx ·
log2(mx + 1)

mx
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where mx is such that x ∈mx
M and nx is such that x ∈nx

tj .
In addition, we need to take into account repetitions in

each test belonging to the test suite. Intuitively, we should
penalise test suites that have tests with many repeated
input/output pairs, even if these pairs do not appear in
other tests of the suite. We present a simple example to
motivate why we need to take this into account.

Example 3. Consider the test suites

T1 = {t1 = (i1i1i1, o1o1o1), t2 = (i2i3i4, o2o3o4)}

and

T2 = {t3 = (i1i7i9, o1o7o9), t4 = (i2i3i4, o2o3o4)}

There is no mutual information between t1 and t2 (sim-
ilarly between t3 and t4). However, we should take into
account the repetition in t1 and we should prefer T2.

If we have a specificationM and a test suite T , then for
each test t ∈ T we have that this self-redundancy factor,
denoted by β(t), is defined as:

β(t) =
∑

x∈t

(nx − 1) · nx

2
·
log2(mx + 1)

mx

where mx is such that x ∈mx
M and nx is such that x ∈nx

t.
In the previous formula, (nx−1)·nx

2 is the sum of the
first nx − 1 integers. This represents the number of pairs
(x1, x2) of input/output pairs such that x1 and x2 are

both in the test and x1 6= x2. In addition, log
2
(mx+1)
mx

is
the biased mutual information between those pairs.

If we appropriately combine these factors, then we ob-
tain our formula for the Biased Mutual Information (BMI)
of a test suite.

Definition 9. Let M be an FSM and T = {t1, . . . , tk} be
a test suite for M . We have

BMI(T ) = α(T ) +
∑

i=1,...,k

β(ti)

In the next section we describe the experiments used
to evaluate BMI.

5. Empirical evaluation

In this section we describe the experiments used to
evaluate the proposed measure (BMI) and assess its ability
to help the tester to choose good test suites. We performed
several experiments with different models and in each we:

• Derived test suites by randomly traversing the spe-
cification.

• Generated mutants of the specification. The rationale
is that test suite T1 is better than test suite T2 if T1
kills5 more mutants than T2.

In the experiments we used 241 real FSMs from a bench-
mark [63]. We also used randomly generated FSMs, with
this providing us with a larger set of subjects and also
the ability to explore how performance changes as we vary
FSM properties such as the alphabet size. There were two
main reasons for us using randomly generated mutants in
the experiments. First, the benchmark FSMs do not come
with faulty versions and, indeed, we are not aware of any
FSM benchmark that includes faulty programs or models.
Second, we do not have a general fault model representing
potential (faulty) implementations of a specification. If we
had such a fault model, then we could have used it instead
of the randomly generated mutants. Observe that since we
used FSMs it is possible to identify equivalent mutants in
low-order polynomial time and so we were able to remove
them. Therefore, we have an implicit fault model, which
is all non-equivalent mutants that can be generated using
our mutation operators.

In the rest of this section, first, we state the research
questions. We then explain the experimental design before
discussing the results of the experiments and what these
tell us about the research questions. All the code, bench-
marks and results from the experiments are available at
https://github.com/Colosu/BMI-test-selection.

5.1. Research questions

In order to evaluate BMI, we first checked how well it
works.

The main motivation for the work described in this
paper is that we would like to be able to choose between
alternative test suites. Thus, as a first step we assessed
whether BMI is effective in guiding such a choice.

Research Question 1. Given a pair of test suites with
the same length, will the one with lower Biased Mutual
Information tend to have higher fault detection ability?

We also wanted to address the related question of whe-
ther lower levels of Biased Mutual Information are asso-
ciated with higher fault coverage; whether a correlation
exists.

Research Question 2. Are lower levels of Biased Mu-
tual Information associated with higher fault coverage?

If we have a positive answer (with statistical signific-
ance) to the above questions, then we would like to see
how BMI compares to the currently proposed Information
Theory approach, the test set diameter (TSDm) measure6.

5A test suite kills a mutant if the test suite contains a test case
such that the specification and mutant produce different outputs in
response to this test case.

6In Section 5.5 we describe how TSDm has been used in test
selection.

8



Range Range Range

Set Set Range outgoing input alphabet output alphabet

number size # states transitions size size

1 241 [3, 156] [0, 130] [2, 130] [2, 65]
2 100 50 [2, 5] 5 5
3 100 50 [2, 5] 25 25

Table 1: Properties of the FSM sets.

Research Question 3. Do test suites selected by BMI
have higher fault coverage than those selected by test set
diameter (ITSDm)?

Finally, we wanted to check whether the time taken to
compute BMI might be better used in executing additional
tests.

Research Question 4. How does the time to execute the
selection method scale as the length of the test suite in-
creases? How does the time needed to compute the selec-
tion method relate to the time needed to apply a test suite?

By the length of a test suite we mean the sum of the
lengths of the tests (sequences).

5.2. Experimental subjects

We designed a series of experiments in order to address
the research questions. We used three sets of FSMs.

Set1 A benchmark of 335 FSMs recently collected [63]. From
this, we selected the 241 deterministic FSMs. These
FSMs represent real-world systems, ranging from the
classical coffee machine to more complex systems
such as ATMs, circuits, network protocols and X-
ray systems.

Set2 A set of 100 randomly generated FSMs with 50 states
and input and output alphabets with 5 elements.
Each state was given a random number, between 2
and 5, of outgoing transitions (except state 50, which
had no outgoing transitions).

Set3 Another set of 100 randomly generated FSMs with
50 states and input and output alphabets of size
25. Again, each state was given a random num-
ber, between 2 and 5, of outgoing transitions (except
state 50, which had no outgoing transitions). These
were used in order to explore the effect of having a
larger input alphabet.

In Table 1 we summarise the main parameters of the
FSMs in these three sets.

We used the first set (Set1) in order to evaluate BMI
on real FSMs. This provided FSMs with varying numbers
of states and varying alphabet sizes. While this is useful,
there is only a limited number of FSMs and the use of these
also limits the control we have (e.g. if we want to vary the
size of the alphabets). This motivated the use of the other
two sets of FSMs.

In order to assess the fault detection ability of a test
suite, we generated mutants of the specification. We only

Value # runs # runs # runs min max % success

of A [0.5,0.6) [0.6,0.7) [0.7,0.8) value value (mean)
1/5 41 9 0 0.536232 0.616319 58.4039%
2/5 12 38 0 0.556391 0.649412 61.6790%
3/5 1 48 1 0.597360 0.703226 65.1793%
4/5 3 44 3 0.588235 0.712062 64.0050%

Table 2: Summary of the results of the experiment with real FSMs.

use the mutation operator that modifies the target state of
a transition because a preliminary experiment showed that
faults produced by mutations on the labels of the trans-
itions are much easier to detect during testing. The use of
mutants is a standard approach to assessing fault detec-
tion effectiveness; see the discussion in the introduction.
We say that a test t kills a mutant N of FSM M if either
M and N produce different output sequences in response
to t or t = t′ i/o t′′ for an input action i, output action
o and prefix t′ such that t′ takes N to a state from which
there is no transition with input action i.

For an FSM specification M , we generated test suites
by randomly traversing M . The FSMs typically had at
least one sink state, with no outgoing transitions: if such
a sink state was reached then a new test was started (at
the initial state).

We now describe the actual experiments used to ad-
dress the research questions and the results of these.

5.3. Using BMI to help guide test suite choice

These experiments explored whether BMI is valid for
our purposes. Initially, we used the real FSMs (Set1). For
each FSM, we generated two test suites, from the FSM, of
length num states× alphabet size×A where we used the
following values for A: { 1

5 ,
2
5 ,

3
5 ,

4
5}. Recall that we gener-

ated a test suite by randomly traversing the FSM, starting
a new test (sequence) whenever a sink state is met; the
length of a test suite is thus the sum of the lengths of the
individual tests (sequences). We let the test suite length
depend on the number of states because the number of
states of the FSMs in the benchmark varied, from 3 to 156
states; we used a length proportional to the potential max-
imum number of transitions of the FSM.

For each pair of test suites, we computed BMI values
to determine which test suite would be selected if we chose
the one with lower BMI. We also produced 100 mutants of
the original FSM; recall that the mutation operator modifies
the target state of a transition. We applied each test suite
to all of the mutants to determine how many mutants were
killed by a test suite. We repeated this procedure 10 times
for each FSM, obtaining 10 pairs of test suites, and then
computed how many times the test suite selected using
BMI was the one that killed more mutants (the percentage
of success). Where two test suites in a pair had the same
mutation score or the same BMI, we replaced this pair
of test suites with another randomly generated pair. We
repeated this process 50 times for each value of A.
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# runs # runs # runs min max % success

Type of test suite [0.5,0.6) [0.6,0.7) [0.7,0.8) value value (mean)
with repetitions 15 32 3 0.540816 0.714286 62.2402%

without repetitions 13 34 3 0.520408 0.737374 62.4924%

Table 3: Summary of the results of the experiment with controlled
FSMs with alphabet of size 5.

Table 2 summarises the results (the full results are
given in Tables A.6, A.7, A.8 and A.9 of the appendix). We
always had a percentage of success that was higher than
58%, and in most cases it was higher than 60%. These res-
ults suggest that BMI performs better than random selec-
tion and that the difference increases for larger test suites.

We then carried out experiments to assess BMI in a
more controlled scenario, using the following approach.
We started with the 100 randomly generated FSMs in Set2
(50 states, between 2 and 5 outgoing transitions for each
state, and alphabets of size 5). We used the process de-
scribed above but this time generating 1000 mutants and
fixing the test suite length to 100, because now we have a
fixed number of states. We repeated the whole process 50
times, obtaining 50 different percentages of success. Since
each percentage of success was obtained from 100 differ-
ent FSMs, the calculation of a mean percentage of success
required 5000 repetitions.

One issue in the design of the experiments was whe-
ther we should check for redundancy in a test suite, where
redundancy corresponds to the case where one test (se-
quence) is a prefix of another. We carried out experiments
to explore the effect of this choice on our results. In these
experiments, we had two scenarios: 1) randomly generated
test suites without checking for prefixes; and 2) discard-
ing prefixes when randomly generating test suites. Table 3
provides a summary of the results (full results can be found
in Table A.10 in the appendix), where we can see that very
similar results were obtained in the two scenarios. Also,
we can see that in both cases, all the values are in the
range [0.5, 0.8), with the majority of them belonging to
the range [0.6, 0.7). These observations suggest that the
effectiveness of BMI is not affected by whether we allow
the test suite to have redundancy. As a result, the remain-
ing experiments consider the case where we do not allow
the test suite to have redundant tests (in practice, this will
typically be the case).

We repeated the experiments using the randomly gen-
erated FSMs with input alphabet of size 25 (Set3), us-
ing test suites without redundancy. The mean percent-
age of success was 75.0605% (full results can be found in
Table A.12 in the appendix). These results are much bet-
ter than the results from the previous experiments and this
suggests that BMI works better in FSMs with larger input
alphabets.

Over all the obtained results, we performed an homo-
geneity of variance check and a statistical hypothesis test
whose null hypothesis was that random selection and or-
dering on BMI give similar results. The homogeneity check

showed that there is no homogeneity, so we cannot use
the ANOVA test. Instead, we applied a Kruskal-Wallis H-
test where we tested whether the results of the experiment
are distributed as the distribution that would arise from
random selection. We assumed that the distribution that
arises from random selection would be a Poisson distribu-
tion with λ = 507. Then, we computed the p-values and,
in all cases, the null hypothesis was rejected with a p-value
extremely close to zero. We also performed an effect size
measure8. We computed Cliff’s delta statistic and we ob-
tained large effect sizes (all higher than 1). This reinforces
the conclusions derived from the previously computed p-
values.

5.4. Assessing correlation
The results described above provide evidence that BMI

works when choosing between two test suites. Ideally, we
would also like a measure that correlates with the fault
detection ability of a test suite.

We repeated the experiment described in the previous
section using the same FSMs (Set2) but different test suites
and mutants. For each FSM, we then computed the correla-
tion between BMI and the mutation score (i.e. the number
of killed mutants). We obtained a mean Pearson correl-
ation of −0.369134 and a mean Spearman correlation of
−0.356978. The fact that the correlations are negative
implies that lower BMI is associated with higher mutation
scores, addressing RQ2. These correlations are consistent
with the results from the previous experiment. The full
results are displayed in Table A.11 (see the appendix).

We repeated the experiment with the FSMs with alpha-
bet size 25 (Set3). The results show a stronger (negative)
correlation. Specifically, we obtained a mean Pearson cor-
relation of −0.650256 and a mean Spearman correlation
of −0.634711. The full results can be found in Table A.13
(see the appendix).

Again, we checked whether the results are statistically
significant. Here our null hypothesis is that there is no
correlation (that is, the correlation is equal to 0). First,
we performed an homogeneity of variance check that told
us that there is no homogeneity, and then we applied a
Kruskal-Wallis H-test where we tested whether the results
of the experiment are distributed as the distribution that
would arise from random selection. We assumed that the
distribution that arises from random selection would be
a normal distribution of µ = 0 and σ = 0.1. Then, we
computed the final p-values that state the significance of
our results. Again, the null hypothesis was rejected, with
the returned p-values being very close to zero. We also
performed an effect size measure, computing the Cliff’s
delta statistic. We obtained large effect sizes (all higher
than 0.8). This reinforces the conclusions derived from the
previously computed p-values.

7In each selection, we have a binomial distribution (50% prob-
ability of choosing the better test suite), and the repetition of this
binomial distribution produces a Poisson distribution of λ = 50.

8https://github.com/txt/ase16/blob/master/doc/stats.md
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5.5. Comparison with TSDm

We performed additional experiments to compare BMI
with a previous information theoretic proposal: the Test
Set Diameter (TSDm) measure.

In order to compare the measures, we started by using
Set2 (100 FSMs with alphabets of size 5). For each FSM, we
randomly generated two test suites, as in previous exper-
iments. We then computed the ITSDm and BMI values
of both test suites and recorded which one was better for
each measure. We then produced 1000 mutants of the ori-
ginal FSM. As before, mutations changed the target state of
a transition. Finally, we computed the mutation score of
each test suite9. We performed this procedure for each FSM

and then computed how many times the test suite selected
using BMI had the higher mutation score, how many times
it was the one selected using ITSDm, and how many times
both measures selected the same test suite. Additionally,
in this last case we checked how many times the test suite
selected was the one with the higher mutation score, and
how many times it was the one with lower mutation score.
We presented the results as percentages. We repeated the
whole process until we obtained 50 different sets of the
corresponding four percentages (each percentage was ob-
tained from 100 different FSMs and 1000 mutants per FSM).

Additionally, we computed the mean execution time for
the computation of each measure, in order to compare the
differences in performance with the differences in execution
time.

In the experiments, on average, 55.84% of the time
BMI selected the best test suite, while ITSDm selected
the best test suite only 46.72% of the time. Moreover, in
30.16% of cases, BMI chose the best test suite and ITSDm
chose the worst one, while the other way around only oc-
curred 21.04% of the time. Finally, 23.12% of the time
both measures failed to select the best test suite. Full
results are displayed in Table A.14 of the Appendix.

Regarding execution time, we found that the mean
time taken to compute BMI was 0.043 seconds, while the
corresponding value for ITSDm was 0.174 seconds. Thus,
the proposed measure required 75.29% less time than ITSDm,
while at the same time obtaining better results. These res-
ults are promising: the proposed measure tended to be a
better guide, than ITSDm, when choosing between altern-
ative test suites and took less time to compute.

We repeated this experiment using Set3 (100 FSMs with
alphabets of size 25) and we again obtained better results
for BMI. On average, 75.78% of the time BMI selected
the best test suite, while for ITSDm this happened only
46.66% of the time. Moreover, 40% of the time BMI chose
the best test suite while ITSDm chose the worst one, while
the other way around only happened 10.88% of the time.
Finally, 13.34% of the time both measures failed to select
the best test suite. Full results are displayed in Table A.15

9A mutant is killed if an input action is received in a state where
it is not defined or the wrong output action is observed.

of the Appendix. With respect to time, the execution time
results are better too, with the computation of BMI taking
a mean time of 0.045 seconds, while the corresponding time
for ITSDm was 0.32 seconds. This corresponds to a 85.94%
saving in execution time.

Similar to the comparison with random ordering, we
analysed the statistical significance of the results of the
experiments, with the null hypothesis being that the two
approaches (using ITSDm and BMI) give similar results.
Again, we performed an homogeneity of variance check
that told us that for the experiment with Set2 there is
homogeneity, but for the experiment with Set3 there is
none. Therefore, we applied an upper-tailed ANOVA test
to the results for the experiments with Set2 (where we
tested whether the results concerning BMI and the ones
concerning ITSDm come from the same distribution) and
we applied a Kruskal-Wallis H-test to the results for the
experiment with Set3 (where we tested if the BMI res-
ults come from the same distribution as the ITSDm res-
ults). We computed the p-values, obtaining p-values close
to zero, so we reject the hypothesis. We performed two
effect size measures (one for each experiment), computing
the Cliff’s delta statistic. We obtained large effect sizes
(greater than 0.89).

5.6. Execution time

On average we needed 0.00083786 seconds to compute
BMI for test suites of length 100.10 In order to simulate
the use of BMI, we extended the experiment for RQ1 as
follows. First, we recorded the (mean) time needed to com-
pute BMI for test suites of length 100, 200, 300, 400, 500,
600, 700, 800, 900 and 1000. We also determined the mean
time needed to apply these test suites to mutants (aver-
aged over 1000 mutants) assuming that the time needed to
execute a transition is 0, 0.000001, 0.00001, 0.0001, 0.001,
0.01, 0.1 and 1 seconds (test execution terminated once
a failure occurred). We compared the mean time to com-
pute BMI with the mean time needed to apply a test suite,
obtaining the results in Figure 4.

Note that the mean time needed to compute BMI in-
cludes the time needed to determine how many times each
input/output pair appears in the specification. This is
computed only once for a given FSM. Therefore, although
we included this in the time needed to compute BMI, when
comparing test suites we need to carry out this computa-
tion only once.

As we can see, as long as the time needed to execute a
transition is greater than 0.001 seconds, computing BMI
is much faster than applying test suites. If this time is
higher than 0.1 seconds then we need minutes (or even
hours if it is higher than 1 second) to apply a test suite. As
an additional result of the experiments, we validated that

10The experiments were run on a GNU/Linux machine with an
AMD R© Ryzen threadripper 1920X at 3.50GHz × 12 cores and with
32GB of RAM (although only one core was running at a time and
we did not use more than 4Gb of RAM).
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Figure 4: Time comparison plots (left to right, from top to bottom, with transition time of 0, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1
seconds).

the time needed to compute BMI scales (approximately)
quadratically with respect to the test suite length.

5.7. Assessing fault complexity and test suites coverage

We decided to assess the fault complexity and test suite
coverage of the randomised elements we use in our experi-
ments. In order to do so, we performed a new experiment.
For the FSMs in Set2 and Set3, we randomly generated 100
test suites and 1000 mutants. We then computed, for each
mutant, how many test suites killed this mutant and the
coverage of each test suite, both in terms of transitions
traversed and states visited, with respect to each original
FSM.

For Set2, each mutant was killed by between 52.78%
and 96.01% of the test suites, with a mean value of 73.45%.
Full results are displayed in Tables A.16 and A.17 of the
Appendix. For Set3, the results range from a minimum
of 0% of test suites killing the mutant to a maximum of
90.21%, with a mean of 43.63%. Full results are displayed
in Tables A.18 and A.19 (minimum results are not dis-
played this time because there was always a mutant that
is not killed by any test suite).

Regarding coverage, we first computed the state cov-
erage and transition coverage of each test suite. In addi-
tion, in order to normalise the values we required an up-
per bound on the maximum achievable coverage since this
would allow us to compute the ratio between obtained cov-
erage and an upper bound. Let us illustrate these concepts
with a simple example.

Example 4. Consider an FSM with 50 states and 150 trans-
itions and a test suite of length 75. An upper bound of the
maximum transition coverage that we can reach is 50%
(the test suite will traverse at most 75 of the 150 different
transitions) while the maximum state coverage that we can

reach is 100%. Note that these values are upper bounds but
need not be least upper bounds because the structure of the
FSM might induce smaller real maxima. For example, if we
consider the FSM depicted in Figure 1, then any test suite
with 6 inputs will have a maximum transition coverage of
6
7 · 100% although our estimate will be 100% because the
FSM has 6 transitions.

Let us suppose that the test suite has a 60% state cover-
age and 40% transition coverage. Then we know that our
test suite covers at least 60% of the maximum number of
states that can be covered by any test suite of its size (as
already said, the real value might be higher). Similarly,
our test suite covers at least 80% of the maximum number
of transitions that can be covered with a test suite of its
size.

We did not compute a true maximum value of coverage
because of the time required. For example, it is straight-
forward to prove that the problem of computing the max-
imum state coverage for a given FSM and test suite length
is NP-hard (by reduction from the Hamiltonian path prob-
lem [64]).

For Set2 we obtained an average state coverage of 77.42%,
while the estimate of maximum achievable state cover-
age was always 100%. For transition coverage, Set2 ob-
tained an average of 40.39% total coverage. If we nor-
malise this number with respect to the estimate of the
maximum achievable transition coverage we have 69.49%.
Regarding Set3, we have 78.54% state coverage (again,
the estimate of the maximum achievable state coverage
was 100%), 41.16% total transition coverage, and 69.91%
transition coverage with respect to the estimate of the
maximum achievable coverage. The full results can be
found at Tables A.20 and A.21 for Set2, and Tables A.22
and A.23 for Set3.
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5.8. Comparison with coverage guided selection

During the analysis of coverage, a concern was raised:
whether our BMI measure was simply a proxy for trans-
ition coverage. In order to determine whether this was the
case, we developed a new experiment. This experiment
was essentially the same as the experiment where we com-
pared BMI with TSDm, but this time we compared BMI
with an approach in which we select the test suite with
higher transition coverage (over the specification) instead
of the one with a higher ITSDm value.

We took Set2 and Set3. For each FSM in one of these
sets, we generated two test suites of length 100, we com-
puted both BMI and the transition coverage of each test
suite, and marked the one chosen by each method. Then,
we generated 1000 mutants of the FSM, computed how
many mutants were killed by each test suite, and compared
them. Then, we computed how many times both methods
select the same test suite and how many times they did
not. When they coincide, we consider two cases: they
selected the test suite that killed more mutants or they
selected the test suite that killed fewer mutants. When
they differed, we determined which test suite killed more
mutants and which one was the method that choose this
test suite. We repeated this full experiment 50 times.

The results for Set2 are interesting: in 65.5% of the
cases, BMI selected the same test suite as coverage. In
54.78% of the cases BMI selected the test suite that killed
more mutants while coverage selected that test suite 62.16%
of the time. In 13.56% of the experiments BMI selected the
test suite that killed more mutants while coverage selec-
ted the other test suite. In 20.94% of the experiments the
situation was the other way round. Finally, both measures
failed to select the best test suite 24.28% of the time.

Regarding computation time, we have that BMI needed
a mean of 0.00295048 seconds while coverage required a
mean of 0.0583516 seconds. This constitutes a 94.94%
saving.

The results for Set3 are not so different: BMI and cov-
erage selected the same test suite 85.78% of the time. In
addition, in 75.96% of the experiments BMI selected the
test suite that killed more mutants, while coverage selec-
ted this test suite 81.78% of the time. In 4.2% of cases,
BMI selected the test suite that killed more mutants and
coverage selected the other test suite; the situation was the
other way round 10.02% of the time. Finally, in 14.02%
of the experiments, both measures failed to select the test
suite that killed more mutants. Regarding computation
time, BMI took 0.00137012 seconds on average and cover-
age took 0.016663 seconds on average. This is a saving of
91.78%.

Similar to the other comparisons, we analysed the stat-
istical significance of the results of the experiments assum-
ing as the null hypothesis that the two approaches (using
transition coverage and BMI) give similar results. Again,
we performed an homogeneity of variance check that told
us that there is no homogeneity for our results. Therefore,

we applied a Kruskal-Wallis H-test to the results, where
we tested if the BMI results come from the same distribu-
tion as the transition coverage results. We computed the
p-values, obtaining p-values close to zero, so we reject the
hypothesis that the results are statistically equivalent. We
also computed the effect-size using Cliff’s delta statistic.
We obtained large effect sizes (greater than 0.82).

Based on the above, we can conclude that BMI is not a
proxy for transition coverage. In addition, although BMI
is not as effective as coverage, it takes less time to compute,
which can be a critical fact in some industrial size cases.
There is therefore a trade-off between the effectiveness of
the approaches and the time taken.

In some ways it is not too surprising that transition
coverage can be more effective than BMI since transition
coverage uses more information about the FSM: it uses in-
formation about the states associated with each input/output
pair rather than just input/output pair frequency. It is
therefore, for example, able to identify cases where the
same input/output pair appears but they represent differ-
ent parts (transitions) of the specification.

In principle, it should be possible to extend the defin-
ition of BMI to use information about the transitions ex-
ecuted instead of input/output pair frequency. However,
this would have at least two disadvantages. The first dis-
advantage is simply that it would be necessary to traverse
the FSM specification and this would increase the compu-
tation time. The second, and rather more important, dis-
advantage is that such a revised definition of BMI would
only be applicable in situations in which we have an FSM

specification. This would go against the aim of develop-
ing a measure that can be used in a range of scenarios.
For example, in principle it should be possible to use BMI
without having a specification, as long as it is possible to
include some initial random testing in order to provide es-
timates of input/output pair frequency; clearly, transition
coverage cannot be applied in such situations.

5.9. Summary

We now summarise what the results tell us about the
research questions.

Research Question 1. Given a pair of test suites with
the same length, will the one with lower Biased Mutation
Information tend to have higher fault detection ability?

The answer to this question is affirmative: BMI tended
to select test suites with higher fault coverage than random
selection. In the experiments BMI selected the best test
suite 62.4924% of the time when we used FSMs with an
alphabet of size 5 (Tables 3 and A.10 in the appendix)
and 75.0605% of the times when we used FSMs with an
input alphabet of size 25 (Table A.12 in the appendix).
BMI also selected test suites with higher fault coverage in
the scenario with real FSMs.

Research Question 2. Are lower levels of Biased Mu-
tual Information associated with higher fault coverage?
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In the experiments, lower levels of BMI were correl-
ated with higher fault coverage. We can conclude this
from Tables A.11 and A.13 (see the appendix), where we
can observe that BMI was negatively correlated with the
mutation score of the tests, with a mean correlation of
−0.369134 for FSMs with an alphabet of size 5 and a mean
correlation of −0.650256 for FSMs with an alphabet of size
25.

Research Question 3. Do test suites selected by BMI
have higher fault coverage than those selected by test set
diameter (ITSDm)?

The answer was again positive: BMI selected test suites
with higher fault coverage than ITSDm. We can conclude
this from Tables A.14 and A.15 (see the appendix), where
we can observe that BMI outperformed the ITSDm meas-
ure when selecting the best test suite from a set of 2 ran-
domly generated test suites.

Research Question 4. How does the time to execute the
selection method scale as the length of the test suite in-
creases? How does the time needed to compute the selec-
tion method relate to the time needed to apply a test suite?

Figure 4 shows that the time needed to compute BMI
increased (approximately) quadratically with respect to
the length of the test suite. Also, the time needed to
compute the selection method was smaller than the time
needed to apply a test suite as long as we need at least
0.001 seconds to execute each transition (Table A.12 in
the appendix).

6. Threats to validity

In this section we discuss the possible threats to the
validity of the results of the experiments.

Concerning threats to internal validity, which consider
uncontrolled factors that might be responsible for the ob-
tained results, the main threat is associated with possible
faults in the tools. In order to reduce the impact of this
threat we tested the code with carefully constructed ex-
amples for which we could manually check the results.
In addition, we repeated the experiments many times to
reduce the impact of randomisation. Another important
threat was the processor reschedule policy, which can af-
fect the recorded times. In order to reduce the impact of
this threat, we abstracted the time computation and only
computed small enough time values so that the reschedule
policy does not affect them. In addition, we repeated the
tests and computed mean values. Another threat was that
Normalised Compress Distance (NCD), used in TSDm,
performs poorly with short strings. We therefore used
relatively long strings; for a test suite of length 100 we
have strings of (100 input actions+100 output actions)×
2 characters per action = 400 characters. We made this
choice because it seemed to be a reasonable test length for

the FSMs used and also because previous work noted that
compression did not work for strings of length less than
128 [21]. It is possible that longer test sequences would
lead to more effective compression and so NCD being a
better guide; this is an issue that could be addressed by
further experiments.

The main threat to external validity, which concerns
conditions that allow us to generalise our findings to other
situations, is the choice of FSMs. Such a threat cannot be
entirely addressed since the population of FSMs is unknown
and it is not possible to sample from this (unknown) pop-
ulation. In order to reduce the impact of this threat we
used randomly generated FSMs and a carefully construc-
ted benchmark. A minor external threat is that if we use
large alphabets for randomly generated FSMs then very few
input/output pairs will be repeated. In order to address
this threat we performed the experiments with different
alphabet sizes, as shown in Section 5.

Finally, we considered threats to construct validity,
which are related to whether we are measuring proper-
ties of interest. The aim of testing is to find faults and so
it is clear that the fault detection ability of a test suite is
of interest, as is the time used to obtain a solution (since
there are finite resources). We used mutants to assess fault
detection ability and ideally we would have also used real
faults. However, we are not aware of benchmark FSMs with
faulty versions; state-based specifications are widely used
in certain areas of industry (e.g. automotive and avion-
ics) but associated companies appear not to have provided
faulty versions. The open source community provides a
source of faulty code but not faulty models.

7. Final discussion: alternative definitions

We have shown that BMI is interesting, potentially
useful and that the time needed to compute it is negli-
gible when compared to the time needed to apply extra
testing. However, it is possible that some of the design de-
cisions were not optimal and, indeed, there were alternat-
ive choices. In this section we describe some such alternat-
ives and the results of additional experiments carried out
to evaluate these. The decisions made, when designing
BMI, fall into the following classes:

1. The formula used to define bmi(t1; t2) in terms of the
‘distributions’;

2. Whether the variables used in the mutual informa-
tion formula were probability distributions.

We now describe some alternatives to the choices made,
along with the results of experiments that evaluated these.

7.1. The definition of bmi(t1; t2)

During the rest of this section, remember that we write
(i, o) ∈m M to denote that the pair (i, o) appears in m
transitions of M and (i, o) ∈n t denotes that the pair (i, o)
appears n times in the test t.
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The definition of bmi(t1; t2) used a transformation of
the X-axis and we might have chosen a different trans-
formation. In order to explore the impact of using a larger
transformation, we considered:

bmi2(ξt1 ; ξt2) =
∑

x∈t2

nx ·
log2(mx + 2)

mx + 2

where mx is such that x ∈mx
M and nx is such that x ∈nx

t1.
Another option is to use the formula n

m
, instead of

1
m
, to compute the values of σt(x) (where x ∈n t and

x ∈m M). This way, we take into account also how many
times the input/output pair is repeated in the test. This
leads to the following formula:

bmi3(ξt1 ; ξt2) =
∑

x∈t2

n1 · n1 · n2 ·
log2(mx + 1)

mx

where mx is such that x ∈mx
M , n1 is such that x ∈n1

t1
and n2 is such that x ∈n2

t2.
Finally, we applied the previous variations with two dif-

ferent approaches to compute the values of σt(x). Instead
of using the probability explained in Section 4, we could
use the number of times an input/output pair appears in
the test suite:

σξA(x) =
1

#test suite I/O pairs with label x

The results of experiments, using Set3 (50 states and
alphabets of size 25), are given in Table 4. These show
that from the seven possible combinations, five are more
or less equally good, and the other two are clearly worse.
Therefore, we decided to retain our approach, since it ap-
pears to keep a good balance between intuition and being
faithful to the original Information Theory formulae.

7.2. Variables used in the mutual information formula

Another important choice was the decision to not use
true random variables and corresponding probability dis-
tributions in the Mutual Information formula. We now
describe some alternatives considered. The alternatives
that we explored used combinations of the following mech-
anisms for generating the random variables used in the
definition of BMI.

1. Whether normalisation is used;

2. Whether one takes into account the number of times
a pair appears in a test;

3. How to consider the case where an input/output pair
appears in both tests (i.e. how one defines the “joint
probability”, corresponding to σξt1,t2

(x1, x2), for two
tests t1, t2 when considering the same pair (x1 =
x2)).

Regarding the first point, normalisation would lead to
a probability distribution (i.e. with values that sum to 1).

Normalisation can be achieved by taking the sum of the
values for the input/output pairs of the test and then di-
viding the value given for each input/output pair by this
factor. This way, the sum of the probabilities of all the
input/output pairs of the test is equal to 1.

Regarding the second mechanism, it would have been
possible to use the number of times each input/output pair
appears within a single test when defining the correspond-
ing probability distribution. The resultant probabilities
depend both on the test and on the FSM. The downside
of this mechanism was that we lose the intuition that we
previously followed, which is that the weight of each in-
put/output pair in a test should be the probability of this
pair corresponding to a particular transition of the spe-
cification (see paragraph after Example 1). Despite this,
we evaluated alternatives that take into account the num-
ber of times an input/output pair appears in a test.

Finally, we considered the approach taken to define
the joint probability distribution for tests t1 and t2. We
explored an alternative approach in which we start by
giving a random variable and its probability distribution
for t1 and t2. Then, we compute the joint probability
of both tests with the uncorrelated input/output pairs of
each test (the case where the input/output pairs are dif-
ferent) and add all these values. This is straightforward
because the joint probability of uncorrelated input/output
pairs is simply the product of the probabilities of each in-
put/output pair. As the sum of all the values of the joint
probability should sum up to 1, we know the amount of
probability corresponding to the correlated input/output
pairs (we will call this P ). Then, we defined s to be
the product of the probabilities of each input/output pair
modified by a factor and we define the joint probability of
the correlated input/output pairs as s divided by the sum
of all the s’s and multiplied by P . This gives us a joint
probability for each pair of correlated input/output pairs
and we could call this “a joint probability of correlated in-
put/output pairs”. It is important to note that this joint
probability is different from the product of the probabil-
ities of each input/output pair; otherwise, in the mutual
information formula we would get log2(1) and since this is
equal to 0, we would have mutual information of 0.

We tried several different combinations of these mech-
anisms. These alternatives are displayed in Table 5. The
column “dist” corresponds to the probability distribution
formula, while “joint” corresponds to the joint distribu-
tion formula for the correlated input/output pairs (for the
uncorrelated input/output pairs, the joint distribution is
the product of the individual distributions). In the table
we assume x1 ∈n1

t1, x2 ∈n2
t2, x1 ∈m M , x2 ∈m M and

P = 1− S1.
As can be seen in Table 5, all the alternative formula-

tions considered were outperformed by the proposed ap-
proach. This is despite some of the alternatives being not-
ably more involved than the proposed approach. All of the
alternatives achieve a mean score between 50% and 65%,
with only one distribution getting more than 60%. In con-
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Test # 0.4% # 0.5% # 0.6% # 0.7% # 0.8% min value max value % success (mean)
MI based on spec 4 33 13 0 0 0.459184 0.680851 56.9662%

MI based on test suite 0 0 3 41 6 0.666667 0.818182 75.0757%
BMI based on spec 0 0 5 36 9 0.673469 0.838384 75.3883%

BMI based on test suite 0 0 5 32 13 0.666667 0.848485 76.4054%
BMI2 based on spec 0 0 14 31 5 0.66 0.816327 74.2696%

BMI2 based on test suite 0 0 1 43 6 0.670103 0.848485 75.1613%
BMI3 3 22 24 1 0 0.42268 0.7 58.9412%

Table 4: Comparing different alternative approaches.

# dist joint s1 s2 S1 S2 success

1
1

m · s

n1

m · s1
·

n2

m · s2
·
P

S2
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x1∈t1
x1∈M

1

m1

∑

x2∈t2
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1

m2
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·
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Table 5: Comparing different probability distributions.

trast, our proposed approach had a score of 75.0605%.
Then, with all this information, we are able to clearly

state that the alternative a tester should use is the one
presented in Section 4.

8. Conclusions and future work

The selection of a test suite can be a critical task be-
cause the time and resources devoted to testing are lim-
ited. In this paper we considered the problem of choos-
ing between two alternative test suites. Solutions to this
problem might be used to directly compare alternative test
suites (e.g. for different sets of features). They might also
be used to guide the generation of test suites in an iter-
ative manner or to inform the choice of which subset of a
regression test suite to use. We observed that diverse test

suites have been found to be effective and proposed the use
of a novel measure, BMI, based on Mutual Information to
assess diversity.

Having developed BMI, and analysed a number of its
properties, we reported on experiments that evaluated it.
First, we randomly generated pairs of test suites and used
BMI to order the test suites in each pair. We then de-
termined how many mutants of the FSM specification were
killed by each test suite. In these experiments we found
that test suites with lower BMI tend to kill more mutants.
This provides evidence that BMI can be used as the basis
for choosing between test suites. There was also a (neg-
ative) correlation between the fault detecting ability of a
test suite (i.e. the number of mutants that it killed) and
the BMI of the test suite. Interestingly, we also found
that BMI outperformed the previous information theor-
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etic measure, Test Set Diameter (TSDm), when selecting
a test suite from a set of two randomly generated test
suites.

The positive results, when comparing BMI with TSDm,
suggest that the use of diversity is improved if we intro-
duce knowledge about the specification; previous work us-
ing diversity has concerned white-box testing and assumed
that a specification is not available. The results suggest
that measures of test suite diversity can be improved if
one has knowledge about the rarity of events. This know-
ledge can be extracted from the specification of the de-
veloped system. Naturally, if additional information is
available then it should be possible to improve on meas-
ures. As a result, we found that transition coverage was
(slightly) more effective than BMI, although the compu-
tation of transition coverage took much more time than
the computation of BMI. Therefore, there is potentially
a trade-off between effectiveness and time taken. Import-
antly, however, BMI can be used whenever we have inform-
ation about input/output pair frequency and is therefore
more widely applicable than transition coverage. In fact,
there is potential to use BMI even if there is no specifica-
tion, since it should be possible to estimate input/output
pair frequency using sampling.

The results presented in this paper have some clear
practical ramifications. First, testers can directly use the
novel BMI measure if they have a number of test suites;
they can compute the BMI of each test suite and take the
one (or ones) with lower BMI. Testers can also use BMI
to drive test subset selection; they can select the subset
with lower BMI. In addition, if there is a limited budget
for regression testing then the tester faces the problem of
choosing a subset of the regression test suite; the test sub-
set selection problem has been addressed based on white-
box coverage information (see, for example, [3, 4, 5]) but,
where this is not available, it is possible to instead use
BMI. BMI can be used by testers when they have limited
information about the specification. In particular, it can
be used instead of methods based on coverage when we
do not have a complete specification of the system but we
have the frequency of each input/output pair.

An intuition that explains why BMI is better than a
true Information Theory based measure can be the fol-
lowing one: BMI gives a proportional value to each in-
put/output pair independently of the rest of the test. That
is, we are giving the same weight to the same input/output
pair independently of the test length. However, when using
Information Theory based measures, we require a probab-
ility distribution over the input/output pairs of the test.
Therefore, the weights of an input/output pair will be dif-
ferent in two different tests. This produces undesirable
effects like the decrease of the weight of an input/output
pair due to it being in a longer test than if it were in a
shorter test. This can lead to situations where, for ex-
ample, a test suite with a longer test with many repeated
input/output pairs could be preferred to a test suite with
many shorter tests with only one repeated input/output

pair between all of them.
There are several possible lines of future work. First,

it would be interesting to explore the use of BMI in the
task of generating new test suites from scratch. Second,
we would like to perform additional experiments to com-
pare BMI and ITSDm. Third, there is potential to apply
BMI in more complex scenarios, with one such scenario
being when the specification is an Extended Finite State
Machine (EFSM). Note that an EFSM can be mapped to
an FSM through expanding out the data, possibly after
applying an abstraction. Thus, EFSM faults that lead to
incorrect variable values map nicely to the type of muta-
tion used in the experiments, in which only the final state
of a transition is changed. Another interesting scenario
is given when we consider distributed systems, possibly
with asynchronous communications, whose specifications
are represented as a variant of an FSM [65, 66]. In order to
confront these more complicated formalisms, we can use
current work that make it possible to apply a systematic
approach to the generation of mutants [67, 68]. In prin-
ciple, it should also be possible to apply BMI even when
there is no specification, since an initial random testing
phase could be used to produce estimates of input/output
pair frequency. For this scenario, there is a need for exper-
iments that explore the process of producing estimates of
input/output pair frequency and also the impact of using
estimates on the effectiveness of BMI. This line of work is
particularly important because it should make it possible
to apply BMI in a context in which we do not have access
to a specification and so we cannot apply a method based
on the coverage of the available test suites.
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Run # Percentage of success

1 0.5761467889908257
2 0.5682242990654206
3 0.5600739371534196
4 0.5918727915194346
5 0.5875
6 0.6102941176470589
7 0.5652173913043478
8 0.5804701627486437
9 0.5652985074626866

10 0.5958254269449715
11 0.5952813067150635
12 0.5882352941176471
13 0.5892547660311959
14 0.5863309352517986
15 0.5678571428571428
16 0.5948905109489051
17 0.569620253164557
18 0.563963963963964
19 0.6133333333333333
20 0.5893805309734513
21 0.6077348066298343
22 0.5871212121212122
23 0.6007604562737643
24 0.5868372943327239
25 0.5979202772963604
26 0.5769944341372912
27 0.5989010989010989
28 0.5362318840579711
29 0.6040145985401459
30 0.5471014492753623
31 0.5886939571150097
32 0.585278276481149
33 0.6046099290780141
34 0.6163194444444444
35 0.5594795539033457
36 0.5659050966608085
37 0.5981981981981982
38 0.5730129390018485
39 0.5801801801801801
40 0.5884543761638734
41 0.5748613678373382
42 0.5545774647887324
43 0.5893805309734513
44 0.5981818181818181
45 0.5822550831792976
46 0.5801801801801801
47 0.5640569395017794
48 0.5786713286713286
49 0.6106870229007634
50 0.6083032490974729

Table A.6: Percentages of success of our selected test suite in the
experiment with real FSMs and A = 1/5.

Run # Percentage of success

1 0.6290726817042607
2 0.5892857142857143
3 0.6421319796954315
4 0.6048192771084338
5 0.6456310679611651
6 0.6059113300492611
7 0.625
8 0.592964824120603
9 0.6132075471698113
10 0.6363636363636364
11 0.6122931442080378
12 0.6222222222222222
13 0.6144278606965174
14 0.6123456790123457
15 0.6327014218009479
16 0.6015037593984962
17 0.6374407582938388
18 0.5949367088607594
19 0.6186666666666667
20 0.6363636363636364
21 0.6155717761557178
22 0.6425
23 0.6289156626506024
24 0.6491228070175439
25 0.5924932975871313
26 0.6428571428571429
27 0.6109785202863962
28 0.5772946859903382
29 0.6169665809768637
30 0.5815602836879432
31 0.6388140161725068
32 0.6341463414634146
33 0.6486486486486487
34 0.6275
35 0.645933014354067
36 0.6265356265356266
37 0.5944584382871536
38 0.6268656716417911
39 0.5965770171149144
40 0.6216867469879518
41 0.6035353535353535
42 0.6191646191646192
43 0.5891089108910891
44 0.5758293838862559
45 0.628140703517588
46 0.6116504854368932
47 0.6494117647058824
48 0.556390977443609
49 0.596401028277635
50 0.6218274111675127

Table A.7: Percentages of success of our selected test suite in the
experiment with real FSMs and A = 2/5.
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Run # Percentage of success

1 0.6346153846153846
2 0.6633663366336634
3 0.6482758620689655
4 0.6782334384858044
5 0.5973597359735974
6 0.6382252559726962
7 0.6054421768707483
8 0.6611295681063123
9 0.6331168831168831

10 0.6820987654320988
11 0.6254071661237784
12 0.6452702702702703
13 0.6528662420382165
14 0.6807817589576547
15 0.6666666666666666
16 0.6511627906976745
17 0.6524590163934426
18 0.6372881355932203
19 0.6910828025477707
20 0.6461038961038961
21 0.6918032786885245
22 0.625
23 0.6587837837837838
24 0.6
25 0.6221498371335505
26 0.7032258064516129
27 0.6710963455149501
28 0.6514084507042254
29 0.6478405315614618
30 0.6366666666666667
31 0.6577181208053692
32 0.6741935483870968
33 0.6806451612903226
34 0.6326530612244898
35 0.6697530864197531
36 0.6825396825396826
37 0.6317567567567568
38 0.6419354838709678
39 0.6489028213166145
40 0.6477987421383647
41 0.6390728476821192
42 0.6861538461538461
43 0.6515151515151515
44 0.6495176848874598
45 0.6513157894736842
46 0.6389776357827476
47 0.6457564575645757
48 0.6332288401253918
49 0.6261980830670927
50 0.6914498141263941

Table A.8: Percentages of success of our selected test suite in the
experiment with real FSMs and A = 3/5.

Run # Percentage of success

1 0.6359832635983264
2 0.622568093385214
3 0.6475409836065574
4 0.7021276595744681
5 0.6509803921568628
6 0.7120622568093385
7 0.636734693877551
8 0.61003861003861
9 0.6126126126126126
10 0.673469387755102
11 0.6204081632653061
12 0.6653061224489796
13 0.6282051282051282
14 0.664
15 0.6613545816733067
16 0.5933609958506224
17 0.6363636363636364
18 0.6428571428571429
19 0.6336206896551724
20 0.6170212765957447
21 0.6223175965665236
22 0.6386554621848739
23 0.6788617886178862
24 0.5882352941176471
25 0.648068669527897
26 0.6283185840707964
27 0.64
28 0.6529680365296804
29 0.6567796610169492
30 0.6491228070175439
31 0.6533333333333333
32 0.6074380165289256
33 0.6260504201680672
34 0.6582278481012658
35 0.6443514644351465
36 0.6317991631799164
37 0.6125
38 0.6313725490196078
39 0.7086614173228346
40 0.6440677966101694
41 0.6173913043478261
42 0.6592920353982301
43 0.6390041493775933
44 0.6942148760330579
45 0.6220472440944882
46 0.6473029045643154
47 0.5966386554621849
48 0.6091954022988506
49 0.6115702479338843
50 0.6111111111111112

Table A.9: Percentages of success of our selected test suite in the
experiment with real FSMs and A = 4/5.
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With without

Run repetition repetition

# of tests of tests

1 0.65 0.555556
2 0.59596 0.62
3 0.666667 0.535354
4 0.602041 0.62
5 0.71 0.642857
6 0.58 0.59596
7 0.66 0.612245
8 0.56 0.65
9 0.65 0.585859
10 0.656566 0.71
11 0.69697 0.520408
12 0.59 0.646465
13 0.63 0.656566
14 0.63 0.636364
15 0.602041 0.737374
16 0.58 0.71
17 0.663265 0.636364
18 0.606061 0.646465
19 0.616162 0.581633
20 0.65 0.608247
21 0.585859 0.686869
22 0.59 0.57
23 0.540816 0.666667
24 0.653061 0.61
25 0.565657 0.626263
26 0.602041 0.61
27 0.61 0.587629
28 0.670103 0.63
29 0.639175 0.618557
30 0.632653 0.636364
31 0.540816 0.59596
32 0.626263 0.57
33 0.618557 0.632653
34 0.68 0.585859
35 0.6 0.646465
36 0.606061 0.64
37 0.58 0.57
38 0.66 0.61
39 0.59 0.626263
40 0.69697 0.663265
41 0.656566 0.69697
42 0.545455 0.656566
43 0.59 0.63
44 0.714286 0.656566
45 0.6 0.540816
46 0.571429 0.642857
47 0.63 0.61
48 0.606061 0.61
49 0.61 0.628866
50 0.714286 0.68

Table A.10: Percentages of success of our selected test suite in the
experiment with controlled FSMs with alphabet of size 5.

Run Pearson Spearman

# correlation correlation

1 −0.378529 −0.447121
2 −0.407239 −0.308503
3 −0.305347 −0.299361
4 −0.338248 −0.257336
5 −0.342747 −0.374436
6 −0.634282 −0.541008
7 −0.731647 −0.731102
8 −0.273694 −0.312782
9 −0.247209 −0.220384
10 −0.395459 −0.409929
11 −0.259926 −0.298081
12 −0.170457 −0.0308619
13 −0.414295 −0.456907
14 −0.507343 −0.693233
15 −0.58775 −0.624765
16 −0.44744 −0.545865
17 0.123024 0.232103
18 −0.383787 −0.300752
19 −0.534142 −0.471783
20 0.00977185 −0.0647103
21 −0.505013 −0.486649
22 −0.354695 −0.484575
23 −0.492013 −0.408578
24 −0.357769 −0.355907
25 −0.460478 −0.391877
26 −0.584937 −0.660399
27 −0.425394 −0.415194
28 −0.224411 −0.227905
29 −0.495339 −0.596992
30 −0.674246 −0.603391
31 −0.0656146 0.00300865
32 −0.468773 −0.438511
33 −0.433851 −0.395637
34 −0.564793 −0.456735
35 −0.553955 −0.548872
36 −0.383386 −0.40271
37 −0.285205 −0.221302
38 0.110759 0.0721805
39 −0.689946 −0.61203
40 −0.664481 −0.54778
41 −0.333295 −0.275188
42 −0.328676 −0.34501
43 −0.158634 −0.202484
44 −0.0459975 0.0428894
45 −0.245797 −0.300113
46 −0.380434 −0.359398
47 −0.325745 −0.26968
48 −0.462855 −0.37594
49 −0.132061 −0.17833
50 −0.242898 −0.248966

Table A.11: Correlation between BMI and mutation score with al-
phabet size of 5.
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Run Percentage Elapsed

# of success Time

1 0.76 0.000842141
2 0.721649 0.000793936
3 0.85 0.000822785
4 0.767677 0.000821019
5 0.826531 0.000813211
6 0.680412 0.000838903
7 0.77 0.000841091
8 0.74 0.000789195
9 0.806122 0.000826917
10 0.707071 0.000835529
11 0.717172 0.000853626
12 0.74 0.00082674
13 0.8 0.000840832
14 0.787879 0.000840821
15 0.76 0.00086412
16 0.75 0.000841077
17 0.714286 0.000850253
18 0.69 0.00082661
19 0.747475 0.0008403
20 0.714286 0.000846815
21 0.707071 0.000871455
22 0.65 0.000806566
23 0.757576 0.000827078
24 0.7 0.000842363
25 0.77 0.000819572
26 0.76 0.000836346
27 0.693878 0.00083186
28 0.717172 0.00085203
29 0.74 0.000836536
30 0.76 0.00085497
31 0.767677 0.000844704
32 0.795918 0.000847846
33 0.767677 0.000852514
34 0.78 0.000832202
35 0.71 0.000828946
36 0.795918 0.000863082
37 0.767677 0.000832604
38 0.83 0.000833852
39 0.83 0.000831776
40 0.838384 0.000874901
41 0.636364 0.000850119
42 0.737374 0.000826633
43 0.83 0.000844154
44 0.767677 0.000823715
45 0.686869 0.000835953
46 0.747475 0.000843442
47 0.69 0.000844199
48 0.73 0.000821044
49 0.7 0.000852965
50 0.814433 0.000873662

Table A.12: Results of BMI computation time.

Run Pearson Spearman

# correlation correlation

1 −0.571537 −0.426476
2 −0.517691 −0.501696
3 −0.692478 −0.634825
4 −0.539586 −0.556391
5 −0.705762 −0.602183
6 −0.671802 −0.555305
7 −0.704822 −0.77924
8 −0.589333 −0.631064
9 −0.56587 −0.519744
10 −0.642352 −0.643851
11 −0.828483 −0.817908
12 −0.614509 −0.62147
13 −0.749209 −0.749906
14 −0.649231 −0.659135
15 −0.583118 −0.360286
16 −0.620321 −0.729323
17 −0.783434 −0.809184
18 −0.761556 −0.733358
19 −0.810923 −0.838661
20 −0.531118 −0.562406
21 −0.347714 −0.341353
22 −0.561493 −0.454306
23 −0.558292 −0.62754
24 −0.662369 −0.72009
25 −0.804059 −0.774436
26 −0.723854 −0.748683
27 −0.798174 −0.7567
28 −0.624052 −0.647347
29 −0.605207 −0.543675
30 −0.525772 −0.561324
31 −0.73993 −0.827379
32 −0.520028 −0.697744
33 −0.541205 −0.496989
34 −0.643269 −0.58443
35 −0.789753 −0.864459
36 −0.843549 −0.767784
37 −0.787704 −0.774436
38 −0.706133 −0.678706
39 −0.666575 −0.715789
40 −0.596623 −0.585844
41 −0.721583 −0.762406
42 −0.725915 −0.708804
43 −0.528187 −0.541008
44 −0.596918 −0.491347
45 −0.694988 −0.527109
46 −0.583214 −0.487585
47 −0.730042 −0.712782
48 −0.60586 −0.64812
49 −0.744956 −0.613996
50 −0.402239 −0.340986

Table A.13: Correlation between BMI and mutation score with al-
phabet size of 25.
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Run BMI ITSDm Draw Draw

# Wins Wins Winning Losing

1 0.29 0.26 0.18 0.27
2 0.3 0.17 0.24 0.29
3 0.39 0.18 0.2 0.23
4 0.32 0.18 0.28 0.22
5 0.24 0.21 0.27 0.28
6 0.36 0.15 0.25 0.24
7 0.33 0.22 0.24 0.21
8 0.28 0.23 0.25 0.24
9 0.31 0.17 0.26 0.26
10 0.31 0.24 0.26 0.19
11 0.33 0.22 0.25 0.2
12 0.29 0.19 0.23 0.29
13 0.33 0.27 0.16 0.24
14 0.27 0.23 0.23 0.27
15 0.36 0.24 0.23 0.17
16 0.32 0.24 0.23 0.21
17 0.26 0.22 0.3 0.22
18 0.31 0.23 0.26 0.2
19 0.26 0.16 0.29 0.29
20 0.25 0.23 0.23 0.29
21 0.31 0.29 0.23 0.17
22 0.27 0.24 0.26 0.23
23 0.27 0.24 0.29 0.2
24 0.32 0.25 0.26 0.17
25 0.29 0.21 0.28 0.22
26 0.35 0.24 0.2 0.21
27 0.31 0.22 0.19 0.28
28 0.31 0.25 0.23 0.21
29 0.28 0.23 0.29 0.2
30 0.22 0.21 0.35 0.22
31 0.3 0.17 0.29 0.24
32 0.35 0.18 0.26 0.21
33 0.29 0.21 0.22 0.28
34 0.34 0.16 0.27 0.23
35 0.32 0.15 0.3 0.23
36 0.36 0.14 0.24 0.26
37 0.31 0.19 0.3 0.2
38 0.35 0.18 0.29 0.18
39 0.34 0.16 0.22 0.28
40 0.32 0.23 0.26 0.19
41 0.23 0.21 0.35 0.21
42 0.23 0.3 0.17 0.3
43 0.25 0.24 0.27 0.24
44 0.27 0.2 0.29 0.24
45 0.31 0.19 0.3 0.2
46 0.29 0.18 0.32 0.21
47 0.21 0.22 0.33 0.24
48 0.28 0.24 0.27 0.21
49 0.37 0.19 0.21 0.23
50 0.32 0.16 0.26 0.26

Table A.14: Percentages from the comparison of BMI with ITSDm
(Set2).

Run BMI ITSDm Draw Draw

# Wins Wins Winning Losing

1 0.38 0.11 0.38 0.13
2 0.43 0.15 0.31 0.11
3 0.38 0.12 0.38 0.12
4 0.36 0.1 0.4 0.14
5 0.41 0.06 0.39 0.14
6 0.33 0.2 0.34 0.13
7 0.5 0.1 0.29 0.11
8 0.39 0.14 0.35 0.12
9 0.39 0.07 0.37 0.17

10 0.36 0.12 0.38 0.14
11 0.42 0.13 0.32 0.13
12 0.41 0.05 0.4 0.14
13 0.44 0.1 0.33 0.13
14 0.37 0.1 0.38 0.15
15 0.38 0.07 0.37 0.18
16 0.36 0.13 0.37 0.14
17 0.51 0.09 0.31 0.09
18 0.43 0.09 0.38 0.1
19 0.36 0.16 0.37 0.11
20 0.35 0.1 0.4 0.15
21 0.4 0.1 0.35 0.15
22 0.44 0.13 0.32 0.11
23 0.41 0.06 0.41 0.12
24 0.44 0.11 0.29 0.16
25 0.39 0.1 0.38 0.13
26 0.4 0.11 0.34 0.15
27 0.45 0.07 0.31 0.17
28 0.34 0.14 0.41 0.11
29 0.45 0.14 0.31 0.1
30 0.41 0.06 0.36 0.17
31 0.38 0.12 0.36 0.14
32 0.42 0.12 0.32 0.14
33 0.38 0.07 0.42 0.13
34 0.4 0.1 0.32 0.18
35 0.43 0.09 0.28 0.2
36 0.4 0.13 0.35 0.12
37 0.26 0.12 0.47 0.15
38 0.43 0.09 0.34 0.14
39 0.42 0.15 0.34 0.09
40 0.5 0.1 0.28 0.12
41 0.41 0.15 0.34 0.1
42 0.44 0.08 0.4 0.08
43 0.42 0.06 0.4 0.12
44 0.31 0.09 0.45 0.15
45 0.46 0.09 0.31 0.14
46 0.42 0.17 0.31 0.1
47 0.43 0.1 0.32 0.15
48 0.31 0.13 0.42 0.14
49 0.37 0.14 0.37 0.12
50 0.32 0.13 0.39 0.16

Table A.15: Percentages from the comparison of BMI with ITSDm
(Set3).
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FSM

# Min. Max. Average

1 0.41 0.99 0.66156
2 1.0 1.0 1.0
3 0.28 0.97 0.59814
4 0.65 0.98 0.79892
5 0.58 0.95 0.76067
6 0.81 0.99 0.91935
7 0.91 1.0 0.94743
8 0.53 0.97 0.77722
9 0.49 0.98 0.74142
10 0.56 0.98 0.74353
11 0.95 1.0 0.97229
12 0.87 1.0 0.93984
13 0.58 0.98 0.74424
14 0.75 0.98 0.85946
15 0.77 1.0 0.87572
16 0.54 0.93 0.73653
17 0.0 0.79 0.42637
18 0.76 1.0 0.86361
19 0.51 1.0 0.72173
20 0.0 0.89 0.40575
21 0.34 1.0 0.63675
22 0.97 1.0 0.98332
23 0.95 1.0 0.97183
24 0.51 0.97 0.71475
25 0.19 0.9 0.53744
26 0.74 0.98 0.85649
27 0.47 0.95 0.69854
28 0.98 1.0 0.9874
29 0.46 0.95 0.69807
30 0.84 0.99 0.91555
31 0.76 1.0 0.87161
32 0.0 0.92 0.43817
33 0.17 0.94 0.51964
34 0.26 0.97 0.57787
35 0.0 0.98 0.41146
36 0.51 0.94 0.71073
37 0.53 0.99 0.7301
38 0.71 0.96 0.83734
39 0.62 0.94 0.77565
40 0.0 0.82 0.42639
41 0.94 1.0 0.96297
42 0.88 1.0 0.93942
43 0.0 0.92 0.44462
44 0.0 0.9 0.42206
45 0.0 0.88 0.43675
46 0.45 0.96 0.67961
47 0.59 0.95 0.78192
48 0.46 0.98 0.69809
49 0.47 0.96 0.71049
50 0.62 0.99 0.78636

Table A.16: Percentage of test suites that kill the mutants (Set2 Part
I).

FSM

# Min. Max. Average

51 0.66 0.99 0.80505
52 0.4 0.97 0.65833
53 0.86 1.0 0.92803
54 0.49 0.91 0.71166
55 0.59 1.0 0.79225
56 0.2 0.97 0.5383
57 0.48 0.94 0.69313
58 0.65 1.0 0.80878
59 0.78 0.99 0.87713
60 0.64 0.96 0.79091
61 0.85 1.0 0.93616
62 0.42 0.94 0.68205
63 0.9 1.0 0.94805
64 0.64 0.98 0.80052
65 0.35 0.96 0.63074
66 0.08 0.94 0.48562
67 0.26 0.86 0.6002
68 0.47 0.95 0.71338
69 0.37 0.96 0.69181
70 0.34 0.93 0.61436
71 0.17 0.91 0.5281
72 0.62 0.94 0.77926
73 0.0 0.89 0.45093
74 0.92 1.0 0.95179
75 0.24 0.85 0.53192
76 0.79 0.98 0.87988
77 0.92 1.0 0.96011
78 0.78 1.0 0.8672
79 0.25 0.92 0.56085
80 0.92 1.0 0.95496
81 0.48 0.98 0.70715
82 0.57 0.98 0.76196
83 0.75 0.98 0.8651
84 0.45 0.99 0.70628
85 0.77 1.0 0.89163
86 0.76 0.98 0.86909
87 0.0 0.9 0.44222
88 0.58 0.95 0.75736
89 0.61 0.96 0.77888
90 0.32 0.91 0.59404
91 0.81 0.99 0.88447
92 0.41 0.95 0.66994
93 0.51 0.95 0.74146
94 0.15 0.91 0.52903
95 0.3 0.94 0.60817
96 0.63 0.95 0.79545
97 0.74 0.98 0.84585
98 0.65 0.95 0.79298
99 0.3 0.94 0.606

100 0.58 0.96 0.77294

Table A.17: Percentage of test suites that kill the mutants (Set2 Part
II).

25



FSM

# Max. Average

1 0.91 0.44829
2 0.9 0.44203
3 0.86 0.43297
4 0.87 0.44348
5 0.88 0.41344
6 0.95 0.43757
7 0.93 0.43475
8 0.89 0.40389
9 0.96 0.43645
10 0.84 0.42938
11 0.91 0.42769
12 0.94 0.45951
13 0.86 0.43165
14 0.83 0.42816
15 0.92 0.4193
16 0.83 0.44864
17 0.89 0.48418
18 0.88 0.43903
19 0.95 0.43351
20 0.92 0.4278
21 0.92 0.41964
22 0.9 0.44669
23 0.84 0.42021
24 0.83 0.43035
25 0.87 0.41209
26 0.91 0.42674
27 0.84 0.45367
28 0.96 0.40972
29 0.89 0.41803
30 0.96 0.43839
31 0.89 0.4641
32 0.97 0.46382
33 0.9 0.44115
34 0.91 0.44495
35 0.91 0.43584
36 0.8 0.4282
37 0.92 0.44832
38 0.9 0.44736
39 0.91 0.45373
40 0.88 0.40431
41 0.87 0.41552
42 0.95 0.43048
43 0.8 0.41188
44 0.88 0.47413
45 0.96 0.43364
46 0.91 0.41166
47 0.9 0.45991
48 0.94 0.45115
49 0.97 0.39983
50 0.92 0.45365

Table A.18: Percentage of test suites that kill the mutants (Set3 Part
I). Minimum is always 0.

FSM

# Max. Average

51 0.96 0.44439
52 0.84 0.39549
53 0.96 0.43365
54 0.97 0.42208
55 0.95 0.46957
56 0.96 0.4291
57 0.94 0.42368
58 0.9 0.41643
59 0.85 0.45532
60 0.88 0.44115
61 0.92 0.43872
62 0.95 0.44664
63 0.88 0.48217
64 0.87 0.45015
65 0.93 0.42311
66 0.88 0.44841
67 0.93 0.44696
68 0.91 0.42443
69 0.83 0.44163
70 0.82 0.41825
71 0.88 0.44828
72 0.9 0.43722
73 0.96 0.43312
74 0.85 0.4523
75 0.85 0.4469
76 0.84 0.41888
77 0.87 0.43075
78 0.93 0.42524
79 0.98 0.41455
80 0.92 0.40092
81 0.99 0.43639
82 0.9 0.44402
83 0.92 0.45994
84 0.89 0.44517
85 0.97 0.46387
86 0.87 0.41392
87 0.9 0.43428
88 0.99 0.4524
89 0.9 0.41782
90 0.87 0.4276
91 0.94 0.44664
92 0.87 0.42702
93 0.95 0.40269
94 0.84 0.42797
95 0.89 0.46605
96 0.91 0.48529
97 0.91 0.43881
98 0.92 0.43231
99 0.88 0.44156

100 0.86 0.43291

Table A.19: Percentage of test suites that kill the mutants (Set3 Part
II). Minimum is always 0.
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FSM State Transition PMATC

# coverage coverage

1 0.7452 0.390893 0.6567
2 0.7672 0.404909 0.6681
3 0.766 0.38388 0.7025
4 0.7568 0.399706 0.6795
5 0.7912 0.409429 0.716499
6 0.7974 0.412286 0.721499
7 0.761 0.408863 0.682801
8 0.7236 0.402134 0.6595
9 0.7736 0.408647 0.6947

10 0.7458 0.377457 0.653
11 0.788 0.420706 0.7152
12 0.763 0.405353 0.6891
13 0.7338 0.382743 0.6698
14 0.803 0.404309 0.7318
15 0.7208 0.403291 0.6372
16 0.79 0.409829 0.717199
17 0.7866 0.399945 0.727899
18 0.7304 0.421753 0.649499
19 0.724 0.398503 0.665501
20 0.8022 0.375026 0.7238
21 0.7558 0.405522 0.661
22 0.7714 0.390471 0.6638
23 0.7632 0.385706 0.6827
24 0.7878 0.4148 0.725899
25 0.7706 0.410542 0.6815
26 0.814 0.388229 0.745401
27 0.7474 0.382102 0.6725
28 0.7958 0.402944 0.725299
29 0.775 0.409415 0.700101
30 0.794 0.399011 0.726199
31 0.8078 0.427134 0.7005
32 0.7938 0.427824 0.7273
33 0.7868 0.392528 0.698699
34 0.7786 0.403121 0.6974
35 0.7692 0.401861 0.691201
36 0.7616 0.390387 0.7066
37 0.7714 0.401221 0.690101
38 0.7874 0.431205 0.7158
39 0.7882 0.394365 0.7138
40 0.7884 0.406514 0.7114
41 0.7444 0.378352 0.688599
42 0.763 0.401198 0.670001
43 0.7324 0.403187 0.6451
44 0.7898 0.396448 0.7255
45 0.796 0.399034 0.7023
46 0.8 0.394837 0.7265
47 0.7954 0.415176 0.7058
48 0.762 0.406871 0.6632
49 0.7852 0.4345 0.6952
50 0.7738 0.40681 0.6631

Table A.20: Test suite coverage evaluation results in percentages
(Set2 Part I). We include Percentages with respect to Maximal
Achievable Transition Coverage.

FSM State Transition PMATC

# coverage coverage

51 0.7616 0.400526 0.684901
52 0.7772 0.418788 0.691
53 0.7418 0.388171 0.679299
54 0.805 0.418439 0.7239
55 0.7834 0.392286 0.686499
56 0.7932 0.389945 0.7136
57 0.7956 0.403218 0.701599
58 0.7328 0.364674 0.671
59 0.7758 0.404768 0.696201
60 0.7766 0.396033 0.7287
61 0.7652 0.396171 0.693299
62 0.7596 0.403095 0.6772
63 0.7674 0.398343 0.6732
64 0.7868 0.409882 0.6927
65 0.7922 0.408363 0.698301
66 0.7748 0.411797 0.687701
67 0.8096 0.436348 0.728701
68 0.8042 0.431151 0.711399
69 0.7686 0.388187 0.706499
70 0.7644 0.388022 0.706199
71 0.8192 0.395769 0.720299
72 0.8152 0.406966 0.724399
73 0.81 0.425 0.714
74 0.7542 0.381768 0.691
75 0.7552 0.378737 0.7196
76 0.7622 0.417665 0.697501
77 0.7768 0.408855 0.6787
78 0.7262 0.386509 0.6532
79 0.7854 0.388989 0.7313
80 0.7648 0.423418 0.669001
81 0.7426 0.400248 0.6444
82 0.7654 0.415305 0.6811
83 0.7908 0.430307 0.7014
84 0.7984 0.435901 0.7018
85 0.7668 0.400059 0.6761
86 0.7816 0.40092 0.6976
87 0.8054 0.437143 0.7038
88 0.7792 0.406994 0.7041
89 0.7882 0.411345 0.703401
90 0.756 0.387598 0.6938
91 0.7746 0.390945 0.7037
92 0.765 0.407651 0.6767
93 0.8102 0.434573 0.7127
94 0.7446 0.415938 0.6655
95 0.7514 0.419063 0.6705
96 0.7968 0.411136 0.7236
97 0.7452 0.376667 0.6893
98 0.7638 0.405907 0.694101
99 0.7834 0.413392 0.706901
100 0.7802 0.405989 0.698301

Table A.21: Test suite coverage evaluation results in percentages
(Set2 Part II). We include Percentages with respect to Maximal
Achievable Transition Coverage.
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FSM State Transition PMATC

# coverage coverage

1 0.7778 0.415671 0.6817
2 0.7662 0.405353 0.6891
3 0.7938 0.413977 0.707901
4 0.7974 0.424458 0.7046
5 0.7744 0.399435 0.707
6 0.8006 0.415407 0.714501
7 0.788 0.405029 0.7007
8 0.7914 0.404413 0.7239
9 0.7674 0.423727 0.6822

10 0.7926 0.403295 0.7098
11 0.7738 0.393779 0.677301
12 0.8128 0.411916 0.687901
13 0.78 0.404128 0.695101
14 0.7956 0.422083 0.7091
15 0.7538 0.397337 0.6715
16 0.7974 0.393757 0.7127
17 0.8096 0.425154 0.693
18 0.7804 0.411183 0.6949
19 0.7802 0.403489 0.694001
20 0.7968 0.405114 0.713
21 0.7718 0.418235 0.711
22 0.7718 0.432911 0.684
23 0.7926 0.408864 0.7196
24 0.8026 0.424551 0.709001
25 0.7774 0.409538 0.7085
26 0.7462 0.391737 0.654201
27 0.7988 0.419461 0.700501
28 0.773 0.3925 0.7222
29 0.7804 0.399385 0.7149
30 0.7782 0.388506 0.675999
31 0.8176 0.419581 0.700701
32 0.7576 0.424494 0.6707
33 0.797 0.413684 0.707401
34 0.7876 0.411579 0.7038
35 0.799 0.399375 0.7029
36 0.801 0.405967 0.7348
37 0.8006 0.439062 0.7025
38 0.7938 0.408855 0.6787
39 0.799 0.40578 0.702
40 0.7884 0.387263 0.7358
41 0.7696 0.393559 0.6966
42 0.7598 0.390284 0.6869
43 0.7528 0.406023 0.694301
44 0.7468 0.422581 0.655
45 0.7734 0.41 0.6724
46 0.7776 0.392198 0.713799
47 0.815 0.421006 0.7115
48 0.7652 0.408963 0.6707
49 0.781 0.396497 0.7018
50 0.7974 0.42018 0.701701

Table A.22: Test suite coverage evaluation results in percentages
(Set3 Part I). We include Percentages with respect to Maximal
Achievable Transition Coverage.

FSM State Transition PMATC

# coverage coverage

51 0.77 0.410424 0.6772
52 0.7694 0.403932 0.718999
53 0.7644 0.429814 0.692
54 0.7758 0.40386 0.690601
55 0.7988 0.438853 0.689
56 0.7748 0.388258 0.691099
57 0.8038 0.408324 0.7309
58 0.7874 0.395281 0.703599
59 0.782 0.436346 0.6807
60 0.7952 0.405402 0.705399
61 0.8026 0.439752 0.708
62 0.7938 0.427048 0.7089
63 0.7782 0.431503 0.6602
64 0.8098 0.435151 0.717999
65 0.7708 0.401395 0.690401
66 0.8094 0.447 0.7152
67 0.7968 0.418537 0.6864
68 0.7756 0.399535 0.687201
69 0.7998 0.42 0.714
70 0.7984 0.411573 0.732599
71 0.8216 0.424269 0.725501
72 0.8052 0.409714 0.716999
73 0.7742 0.422638 0.6889
74 0.8286 0.441212 0.727999
75 0.799 0.416667 0.7125
76 0.7854 0.382989 0.7047
77 0.7798 0.413721 0.711601
78 0.7704 0.409177 0.6956
79 0.7348 0.397831 0.6604
80 0.7762 0.398962 0.7301
81 0.7524 0.412468 0.6517
82 0.7512 0.42075 0.6732
83 0.7704 0.414479 0.6756
84 0.8016 0.412486 0.7136
85 0.7934 0.420311 0.6767
86 0.7848 0.401808 0.7112
87 0.8016 0.401932 0.7074
88 0.7922 0.40503 0.6845
89 0.7618 0.405497 0.693401
90 0.807 0.390909 0.731001
91 0.733 0.397469 0.6439
92 0.7916 0.428036 0.7191
93 0.7738 0.39676 0.7102
94 0.7826 0.412126 0.7171
95 0.8102 0.415882 0.707
96 0.807 0.452467 0.6787
97 0.79 0.425864 0.6899
98 0.794 0.395304 0.7155
99 0.8116 0.427679 0.7185
100 0.7898 0.415385 0.702

Table A.23: Test suite coverage evaluation results in percentages
(Set3 Part II). We include Percentages with respect to Maximal
Achievable Transition Coverage.
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