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Abstract
In order to produce service compositions, modern web applications now combine both in-house and
third-party web services. Therefore, their performance depends on the performance of the services
that they integrate. At early stages, it may be hard to quantify the performance demanded from the
services to meet the requirements of the application, as some services may not be available or may not
provide performance guarantees. The authors present several algorithms that compute the required
performance for each service from a model of a service composition at an early stage of develop-
ment. This is also helpful when testing service compositions and selecting candidate web services,
enabling performance-driven recommendation systems for web services that could be integrated into
service discovery. Domain experts can annotate the model to include partial knowledge on the expec-
ted performance of the services. We develop a throughput computation algorithm and two time limit
computation algorithms operating on such a model: a baseline algorithm, based on linear program-
ming, and an optimised graph-based algorithm. We conduct theoretical and empirical evaluations of
their performance and capabilities on a large sample of models of several classes. Results show that
the algorithms can provide an estimation of the performance required by each service, and that the
throughput computation algorithm and the graph-based time limit computation algorithm show good
performance even in models with many paths.

1. Introduction
The advent of Service-Oriented Architectures (SOAs)

has given rise to the creation of specific technologies to com-
bine external services, often web services, into new services
named service compositions. Several special-purpose lan-
guages, such as the Web Services Business Process Exe-
cution Language (WS-BPEL 2.0) and the Business Process
Model and Notation (BPMN 2.0), have been standardised [1,
2]. These languages allow software engineers to model ser-
vice compositions concisely in a workflow-based notation,
which is easier to understand by domain experts with no
technical knowledge about their implementation.

Roughly speaking, domain experts just define the ele-
ments of the composition and how they relate to each other,
while software engineers integrate the different parts required
to make the service composition works. In order to quickly
develop high-quality applications and reduce costs, software
engineers normally reuse services from third parties or other
parts of the organisation in their service compositions. Such
a combination of internal and external services implies that
the overall quality of service (QoS) cannot be fully under-
stood during specification, as it depends on the QoS of the
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integrated services. Therefore, QoS is barely controlled at
development time and may pose a threat in production.

Many different strategies have been proposed and com-
bined in order to deal with dependencies in software sys-
tems [3]. One of the most common approaches is to sign Ser-
vice Level Agreements (SLAs) with the external providers
and watch the services for performance degradation. How-
ever, defining the parameters of the SLA or what are the con-
ditions to detect a degradation in performance can be dif-
ficult: asking too much may be expensive for the service
consumer, while asking too little may alienate its custom-
ers or users. QoS is usually assessed dynamically, by con-
stantly monitoring the performance of services. Existing
approaches have focused on computing the expected global
QoS from the local QoS of each service, and using this in-
formation to select services among several candidates so that
the global requirements are met [4, 5].

However, there are many cases in which either we do
not know in advance the expected QoS for every service in-
volved or better QoS comes at a higher cost. Perhaps, the
data is not published by the service provider or we simply
do not trust it. Alternatively, it may be the case that the ser-
vice is not even implemented yet. Monitoring may be not
possible in this context. Then, our only choice is to make an
educated guess. Nevertheless, if we guess wrong, we will
have to manually revise all the estimations, which is tedi-
ous and error-prone. Besides, we are likely to loose money,
reputation, or both.

In this context, we propose using an abstract high-level
model of the service composition to statically compute what
QoS should be demanded from the services to be integrated,
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so that their composition can meet the global QoS require-
ment of the service composition.

Needless to say, this is quite a challenging problem. First,
a service composition can be executed concurrently by mul-
tiple users, which affect its workload. Second, we need to
enrich the workflow-based model of the service composition
with performance annotations to provide relevant informa-
tion concerning performance requirements. Third, regard-
ing the services that will integrate the composition, the QoS
information can be known, unknown, or partially known.
Fourth, when faced to a decision in the workflow, the do-
main expert should be able to provide an estimation of the
probabilities with which each branch is taken. Fifth, QoS
might refer to either throughput or time limits, the latter be-
ing considerably more challenging to compute.

The ultimate goal is to “fill the gaps”, computing for each
service the QoS that would make possible to meet the per-
formance specification of the service composition. Should
we develop a reliable method to estimate this missing in-
formation, we would be able to pick the services that bet-
ter fit the task from the different web services and providers
available. Aware of this information, service discovery could
incorporate QoS negotiation too.

Recent work in web service recommendation systems
takes into account different characteristics of web services,
such as their history [6], geographic location [7], and isol-
ated QoS [8]. However, to the best of our knowledge, there
is a lack of approaches facing how to compute the perform-
ance of web service compositions from their constituent web
services, particularly when complete information about the
QoS of the web services is not available. This absence is
probably due to two main causes. First, the automatic com-
putation of the relevant quantities is a difficult task because
it has to consider the interaction between the composition
workflow and the different services involved in the compos-
ition. Strongly related to this first issue when the QoS is not
known or it is just partially known, the combinatorial explo-
sion underlying the possible interactions between services
in a composition diminishes the capability of potential algo-
rithms to compute a feasible solution in a reasonable amount
of time. The need to work with incomplete information is a
rather common situation in this context.

We present an algorithm to compute the throughput of
the integrated services and two algorithms to compute their
time limits. The first time limit computation algorithm trans-
forms the model into several linear programming (LP) op-
timisation problems, which can be solved with standard LP
tools. The second one is a graph algorithm that has been de-
vised for this particular task, achieving better performance
in the average case.

Many different notations and profiles have been defined
to specifymodels featuringworkflows and compositions, but,
unfortunately, it is not always possible to faithfully trans-
late to each other. Our algorithms work on models that are
similar to UML activity diagrams, with some simplifications
and extensions. The use of our own notation for models is
not a restriction for people using a different notation. Our

notation is defined by a metamodel that abstracts away de-
tails that are not necessary for the computations at hand, but
it describes models that are high-level enough so that it is
straightforward to translate models from different notations.
For example, we will show how to transform a BPMNmodel
into a model in our notation. We have chosen BPMN be-
cause it is becoming a de facto standard for developing ser-
vice compositions (e.g. jBPM1 and Bonita Platform2 both
support BPMN 2.0).

One might argue whether it would be better to stick to
one formalism, either UMLorBPMN.Although our primary
focus is on UML, we think that our proposal has the potential
to serve two communities: the Software Engineering com-
munity, using UML, and the Business-Process Modelling
community, using BPMN. In fact, we would like to convey
the idea that BPMN can be used for high-level modelling
while UML can be used as a lower-level target to map other
modelling paradigms (e.g. those based on OMG MARTE)
through UML profiles. In our case, in order to increase re-
usability as much as possible, we have selected a very small
subset of UML. This reduced set would allow users follow-
ing our approach to automatically transform BPMN/BPEL
models into UML by using transformation languages, such
as ATL (the ATLAS Transformation Language) or ETL (the
Epsilon Transformation Language) [9, 10].

Regarding the main contributions of this paper, they can
be summarised as follows:

1. Three novel algorithms are presented to compute QoS
performance characteristics (throughput and time lim-
its) from a high-level annotated specification. The al-
gorithms have been implemented and evaluated.

2. Ametamodel inspired by UML activity diagrams with
constraints, which is enriched with performance an-
notations, is presented. An Eclipse-based model ed-
itor can be used to graphically design new models,
verify that they honour the metamodel, and apply the
algorithms, as they are provided as Eclipse plugins.

3. Our models can take into account the number of con-
current users, which impact the workload of the ser-
vice composition, the relativeweight of different activ-
ities, and how many times they are repeated.

4. Our algorithms can work in a context where complete
information concerning the performance of each ser-
vice in isolation is not available.

5. The assignment of time limits is fair in a precise sense,
so that slack time is distributed among activities ac-
cording to their relative weight and how many times
they are repeated.

6. Nested activities are included in themetamodel. There-
fore, hierarchical models where a service composition
uses another composition as one of its services can be
defined. In particular, the lack of complete inform-
ation about services included in nested compositions
can be modelled too.

1https://www.jbpm.org
2https://www.bonitasoft.com
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7. All the relevant source code and software artefacts are
available in theGitHub repository https://github.com/

agarciadom/sodmt under the Eclipse Public License 2.0.
The rest of the paper is structured as follows. Section 2

introduces our service compositionmetamodel, the perform-
ance annotations that we use, and a complete example of
translation from a model specified in BPMN 2.0. Next, Sec-
tion 3 introduces the general approach in an intuitivemanner,
explains our algorithms in detail, applies them to a simple
running example, and explains the key optimisations used.
Then, Section 4 discusses their implementation and analyses
their theoretical and empirical performance. Section 5 iden-
tifies the limitations of our approach. Section 6 is devoted
to discuss related work. Finally, Section 7 presents our con-
clusions and future work.

2. Service composition model for performance
This section presents how we model service composi-

tions. The models that we use are performance-aware and
can be used by our algorithms to compute relevant QoS in-
formation. These models resemble UML activity diagrams,
but the available set of elements is restricted to those re-
quired by the algorithms. Besides, the executable nodes and
control flow elements in a model can be annotated with op-
tional performance annotations, in addition to a mandatory
global performance constraint specified for the wholemodel.

After describing the core elements of the metamodel and
their semantics, the available performance annotations are
presented. This section concludes with a running example
specified in BPMN 2.0 and its mapping to our notation.
2.1. Core elements and constraints

Figure 1 shows a UML class diagram with the elements
of the metamodel. The models described by this metamodel
can be regarded as a simplification ofUML activity diagrams
with some extensions allowing us to attach performance an-
notations. For the sake of readability, classes Activity and
ActivityNode have been repeated in the diagram (please, no-
tice the arrow mark in their upper-right corner).

AnActivity contains a set of ActivityNodes connected by
directed ActivityEdges modelling their control flow. It also
includes one global PerformanceAnnotation, which estab-
lishes the global constraint of the model. Several kinds of
ActivityNodes can be specified:

• An ExecutableNode encapsulates behaviour, which is
described by its name. It may have a LocalPerform-
anceAnnotation describing the information known at
the time by the modeller. There are two kinds of ex-
ecutable nodes:

– The StructuredActivityNode, which simply acts
as containers of zero or more activity nodes with
their internal control flow.

– TheAction, which implements some atomic unit
of behaviour.

Together, they allow for a precise description of the
structure of the workflow and its performance expect-
ations at different levels of abstraction.

• An InitialNode is the single starting point of all exe-
cution paths in the model or in a certain Structured-
ActivityNode.

• A FinalNode terminates the current execution path, as
flow final nodes do in UML. More than one final node
is allowed in a workflow or a StructuredActivityNode.

• A DecisionNode selects the outgoing branch whose
condition holds. Every outgoing edge from a Deci-
sionNode should have a non-empty condition and prob-
ability of activation (a number between 0 and 1). The
sum of all the probabilities across the outgoing edges
of a DecisionNode should be equal to 1. Probabilit-
ies are set by the domain expert, as they depend on
domain knowledge.

• A MergeNode brings together, at least, two mutually
exclusive paths that diverged at a previous Decision-
Node.

• A ForkNode continues execution through several con-
current paths.

• A JoinNode brings together, at least, two concurrent
paths that diverged at a previous ForkNode, waiting
for all of them to join.

Valid models have to meet additional constraints too:
1. ForkNodes andDecisionNodes must have two ormore

outgoing ActivityEdges. FinalNodes must not have
outgoing edges. The rest must have exactly one out-
going edge.

2. JoinNodes must have two or more incoming Activ-
ityEdges. InitialNodes must not have any incoming
edges. The rest must have exactly one incoming edge.

3. Theremust be exactly one InitalNode outside all Struc-
turedActivityNodes and one inside each Structured-
ActivityNode.

4. JoinNodes and MergeNodes must only join paths that
diverged at the same ForkNode or DecisionNode, re-
spectively. Please, notice that this guarantees that forks
and decisions are “balanced”.

5. Every execution path in the graph must start at an Ini-
tialNode and end at a FinalNode, and every node must
belong to at least one execution path (otherwise, it
would never be run and therefore should be removed).

6. Execution paths cannot cross a StructuredActivityNode
to directly leave or enter any contained ActivityNode:
the model has to be well structured.

7. The underlying directed graph must be acyclic. In or-
der to model loops, the number of iterations can be
specified by using local performance annotations.
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Figure 1: UML class diagram of our workflow metamodel (simplification of UML activity diagrams)

2.2. Performance annotations
There are two kinds of performance annotations:
1. The mandatory global PerformanceAnnotation. The

modeller must set concurrentUsers to howmany users
per second are expected to start the workflow. Be-
sides, secsTimeLimitmust be set to the time in seconds
in which all the paths in the workflow should have fin-
ished their execution under the specified workload.

2. The optional LocalPerformanceAnnotations for the ex-
ecutable nodes in the workflow. A relevant feature
of our algorithms is that the local values for concur-
rentUsers and secsTimeLimit are automatically com-
puted. In a local performance annotation, minimum-
Time is the minimum time in seconds that should be
allotted to the node, whileweight is a relative measure
of how computationally intensive the node is. Having
a weight of 3 roughly means that its execution may
take up to three times longer than in nodes with weight
1, after considering all the minimum times. Finally,
reps is the expected number of iterations (at least, one)
the node will go through.

By default, attributes minimumTime, weight and reps
are set to 0, 1, and 1, respectively. These values model the
simplest case: a node with unknown minimum execution
time and unit weight, whose execution is not repeated. We
will formally define these concepts in Section 3.
2.3. Algorithm inputs and high-level behaviour

Our algorithms take as their input a valid model, with re-
spect to the metamodel given in Figure 1 and the constraints

described in Sections 2.1 and 2.2. Then, they process the
model to extract all the necessary input variables.

1. Workload and time limit, as specified in the global
PerformanceAnnotation.

2. Minimum time, weight and number of repetitions spe-
cified in each LocalPerformanceAnnotation.

The algorithms update the concurrentUsers and secsTime-
Limit attributes of the LocalPerformanceAnnotation for each
ExecutableNode with the computed values. These include
local computations in the service composition, whose cost
is usually negligible, and the performance requirements for
each web service in the composition.

The values assigned to minimumTime and weight can
model several common scenarios depending onwhat themod-
eller knows about the expected time limit of a node. Let
m ≥ 0 denote the minimum time and w ≥ 0 denote the
weight. The following mutually exclusive situations arise:

• m = 0, w = 0. In this case, the node execution costs
nothing. This is not used with an ExecutableNode.
Rather, these are the default values for every Activ-
ityNode that is not an ExecutableNode. This makes
them effectively invisible to the algorithms, except for
how they branch and join the execution paths.

• m > 0, w = 0. In this situation, we have a node with
a fixed time limit, as no extra time is allotted bey-
ond the minimum time m. This usually means that
there is a strict Service Level Agreement (SLA) for the
web service or software component represented by the
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node, which ensures that it will finish exactly within
m seconds.

• m = 0, w > 0. If we have this combination of values,
then time will be automatically allotted. There is no
known SLA or estimate of how long it could take. In-
stead, the modeller must compare the cost of the node
with the rest of nodes in the workflow.

• m > 0, w > 0. In this scenario, part of the allotted
time is set manually and the rest is computed automat-
ically. This can be useful if we have previousmeasure-
ments that point to a certain minimum time, but still
want to grant some of the remaining time.

Finally, let us briefly describe a key characteristic of our
algorithms: they support nested activities. First, an initial
pass is run on the outermost activities, computing their local
performance requirements. These local requirements are then
used in later passes as global requirements for the activities
nested inside them. This allows the algorithms to descend re-
cursively through the model, starting at the outermost layer
and proceeding until only atomic actions are left.
2.4. Notation

Next, we introduce some concepts and notations that will
be used to define our algorithms.

• s(e) and g(e) are the source and target ActivityNodes
of ActivityEdge e, respectively.

• i(n) and o(n) are the incoming and outgoing edges of
node n, respectively.

• T (I) denotes the throughput, that is, the number of
requests per second (henceforth, “req/s”) entering the
outermost InitialNode I .

• Sw(pA) denotes the additional time per unit of weight
beyond the minimum time needed for the actions ap-
pearing in pA. That is, this is the slack available per
unit of weight.

• L > 0 is the global time limit of themodel, in seconds.
• C(L) = {(m,w) ∣ 0 ≤ m ≤ L ∧w ≥ 0} is the set of

all valid minimum time and weight constraints under
a global time limit L.

• c(n) = (m(n), w(n)) ∈ C(L) is the constraint associ-
ated to node n, where m(n) is the minimum time limit
of n and w(n) is its weight.

• r(n) is the number of times that node n is run (see Sec-
tion 2.2). If n is inside a StructuredActivityNode, it
is the number of times that n will be run each time its
container is run.

• c(p) = (m(p), w(p)) ∈ C(L) is the constraint associ-
ated to path p, where m(p) = ∑

n∈p m(n)r(n) (the total
minimum time through p) and w(p) = ∑

n∈pw(n)r(n)

(the total weight through p). Please, notice that the
number of iterations corresponding to each node in p
is taken into account in m(p) and w(p).

• PS (n) is the set of all paths starting at the node n.
• d(n) is the depth of the node n. This value is defined

as 0 when n does not belong to any StructuredActivi-
tyNode, and as 1+d(ns)when n belongs to the Struc-
turedActivityNode ns.

• We define layer D of the model as the set of nodes
n such that d(n) = D. Layer 0 is the global layer,
containing the topmost InitialNode.

2.5. Running example
In the previous sections we described the core elements

that constitute our models, the information stored by our per-
formance annotations, as well as the relevant parameters and
high-level behaviour of our algorithms. Next, we show how
to derive a non-trivial model in our notation from a web ser-
vice composition modelled in BPMN 2.0, and explain the
graphical notation used.

The original BPMN 2.0 model is shown in Figure 2. It is
a collaboration between several partners: the client that in-
vokes the web service composition implementing the model,
the order processing system (“Orders”) that executes the com-
position, theweb services provided by the billing department
(“Billing”), and the web services provided by the logistics
department (“Logistics”). Each partner is shown in a differ-
ent pool.

The current web service composition is contained in the
“Orders” pool, which is the only executable pool. Its con-
tents may be either natively executed by the execution engine
or mapped first to a different language, like WS-BPEL 2.0.

This web service composition follows these steps:
1. Receive a message from the client with the order.
2. Evaluate the order using a set of internal business rules.
3. If the order is rejected, then close the order and notify

the client.
4. If the order is accepted, then:

(a) Divide the order into segments, to ensure that the
customer receives each item as soon as possible.

(b) For each segment, create the invoice and per-
form the payment at the same time the shipment
order is sent. This is done by invoking the web
services provided by the other departments.

(c) Close the order and notify the client.
Mapping the previously described BPMN 2.0 model to

the notation used by our algorithms is straightforward. The
resulting model can be seen in Figure 3. We can study the
performance needed by the different tasks and the invoked
web services by executing our algorithms on this model. The
model includes a global annotation with the global time limit
L for all execution paths, and the throughput T (I) specified
as the number of requests per second entering the outermost
InitialNode I . Every ExecutableNode includes an (m,w, r)
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Figure 2: Running example with a BPMN collaboration between web services for processing an order

Evaluate Order
m = 0.4 w = 0

r = 1

Divide into
Segments

m = 0 w = 1
r = 1

Ship Order
m = 0 w = 1

r = 1

Create Invoice
m = 0 w = 1

r = 1

Perform Payment
m = 0 w = 1

r = 1

Close Order
m = 0 w = 1

r = 1

Process Segments
m = 0 w = 1 r = 5

L = 1 T (I) = 1

[accepted] (prob=0.8)

[rejected] (prob=0.2)

Figure 3: Annotated model for the running example, mapped from BPMN and defined using the metamodel in Figure 1.

tuple with the minimum time, weight and number of repe-
titions, corresponding to its local performance annotations.
Decision branches include the estimated traversal probabil-
ities.

Next, we describe the steps followed to obtain this model

from the BPMN 2.0 model given in Figure 2:
1. The model was created from the contents of the only

executable pool, “Orders”. This is the actual process
to be executed: the other pools only provide contex-
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tual information.
2. Start and end events were mapped to InitialNodes and

FinalNodes, respectively.
3. Atomic tasks were mapped to Action nodes, and tasks

containing other tasks within them were mapped to
StructuredActivityNodes.

4. The pair of exclusive gateways (marked with ×) were
mapped to a DecisionNode and a MergeNode.

5. The pair of parallel gateways (marked with +) were
mapped to a ForkNode and a JoinNode.

6. Local performance annotations were added to the Ex-
ecutableNodes. Most annotations hadminimumTime
set to 0 and weight set to 1, as we did not have any
solid estimates of their execution times or computa-
tional cost. This is quite common at an early stage of
development, when the actual services have not been
implemented yet.

In addition, we set minimumTime to 0.4 s for “Evaluate
Order”, ensuring it receives at least 0.4 s. Since its weight
is set to 0, it will not get any more time than that: it will be
allotted exactly 0.4 s. We use this combination of values to
represent the situation in which a strict SLA saying that it
should never take longer than 0.4 s had been signed.

Finally, allAction nodes have reps set to 1. However, the
StructuredActivityNode “Process Segments” was originally
a loop, as indicated by its circular arrow symbol on the bot-
tom edge in the BPMN 2.0 model. For that reason, we set
reps to an estimate of the maximum number of segments that
we would expect to see in an order (in this case, 5).

3. Algorithms
In the previous section, we described the formalism and

metamodel, based on annotated UML activity diagrams, for
our models. Next, we introduce the algorithms that will take
one of these models and compute the desired figures.

First, we give an intuitive explanation to describe the
general approach underlying the behaviour of our algorithms,
together with some notation that will be used in their defini-
tions. Then, we design and implement three algorithms. The
first one computes the expected throughput of each Execut-
ableNode. The remaining two algorithms compute the time
limit of each ExecutableNode, the latter being a more com-
plex, but also more efficient, alternative to the former. A tex-
tual example is provided in Section 3.3.4. Additional graph-
ical animations illustrating a step-by-step execution for each
algorithm presented in Sections 3.2, 3.3.2 and 3.3.3 are avail-
able at https://agarciadom.github.io/sodmt/algorithms.
3.1. Intuitive approach

First, we will provide an intuitive description of what
the algorithms try to achieve, based on the running example
depicted in Figure 3.
3.1.1. Throughput computation

To begin with, we focus on the global layer (zero depth)
and consider the global requirement associatedwith the num-
ber of requests per second. In our case, we have T (I) = 1

(see the dotted box in Figure 3), that is, 1 req/s will come
through the InitialNode (depicted as a black circle) and reach
“Evaluate Order”. Therefore, its expected throughput will
be 1 req/s too. Then, we observe that the domain expert has
estimated that 80% of the requests will go through the De-
cisionNode to “Divide into Segments”, while 20% of the re-
quests will end up in “Close Order” (see value of “prob” as-
sociated to each branch in Figure 3). Therefore, the expected
throughput of “Divide into Segments” will be 0.8 req/s. Ob-
viously, this is also the amount corresponding to “Process
Segments”. Finally, all the incoming requests will merge
into the MergeNode preceding “Close Order”, so that its re-
quired throughput is again 1 req/s.

After the global layer is done, it is possible to obtain
the throughput for the actions within “Process Segments”
(depth one). Since we already know that 0.8 req/s will come
through its nested InitialNode and both inner paths need to
be concurrently executed, we can conclude that “Ship Or-
der”, “Create Invoice” and “Perform Payment” must all be
able to handle 0.8 req/s.

Therefore, it can be observed that the process to compute
the throughput from our models is quite simple and can be
easily automated by traversing the graph in topological or-
der. The algorithm for throughput computationwill be given
in Section 3.2.
3.1.2. Time limit computation

In order to compute time limits, every possible path start-
ing from the InitialNode has to be taken into account. How-
ever, some paths may impose stricter constraints than oth-
ers. Returning to our running example, there are two paths:
one for rejected orders (that we call pR) that skips over “Di-vide into Segments” and “Process Segments”, and one for
accepted orders (that we call pA) that passes through them.
Clearly, pA is stricter, as it runs everything in pR and more.

In order to decide the time limits for the actions appear-
ing in pA, we just need to sum their minimum times and
weights, after multiplying them by the number of times that
the corresponding action is repeated. The total minimum
time through pA ism(pA) = (0.4⋅1+0⋅1+0⋅5+0⋅1) s = 0.4 s.Therefore, we know that we have L − m(pA) = 0.6 s left todistribute among the actions in pA. Since the total weight
through pA is w(pA) = 0 ⋅ 0 + 1 ⋅ 1 + 1 ⋅ 5 + 1 ⋅ 1 = 7, weconclude that the slack available per unit of weight is given
by Sw(pA) = 0.6∕7 ≈ 0.086 s.The last step is using Sw(pA) to compute the time lim-
its of each action in pA. For “Evaluate Order”, it is exactly
0.4 s, as it has zero weight. For “Divide into Segments” and
“Close Order”, it is 0.086 s, as their minimum time is 0. For
“Process Segments”, the minimum time is also 0, but each
of the 5 repetitions gets 0.086 s for a total of 0.43 s.

This process can be now repeated within “Process Seg-
ments”, using the 0.086 s time limit as its “global” constraint.
There are only two paths, which do not share any activities.
We will visit the bottom path first, as it has a higher total
weight (2 instead of 1). The bottom path allocates 0.086∕2 =
0.043 s of slack per unit of weight to “Create Invoice” and
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“Perform Payment”, and the top path allocates 0.086 s per
unit of weight to “Ship Order”. The resulting time limits
will be 0.043 s for “Create Invoice” and “Perform Payment”
and 0.086 s for “Ship Order”.

While this process is simple, it is somewhat complex to
automate fully in an efficient manner. Our first approach
(described in Section 3.3.1) is to produce an optimisation
problem and solve it with standard linear programming ma-
chinery. Unfortunately, time can grow fast as the number of
overlapping subpaths increases. In the worst scenario, the
number of paths could grow exponentially with the size of
themodel, producing a combinatorial explosion. The second
approach (described in Section 3.3.2) can discard uninterest-
ing paths as soon as possible, keeping the size of the problem
under control and avoiding the combinatorial explosion.
3.2. Throughput computation

The algorithm source code is publicly available at file
concurrent_users.eol under repository https://github.com/

agarciadom/sodmt. Next, we describe the algorithm in detail.
Wewill define T as a functionwhich takes a node or edge

and produces its expected throughput. The formula to be ap-
plied depends on the type of element passed to it. Formally:

• For an ActivityEdge e, T (e) = (e) ⋅ T (s(e)), where
(e) is the probability of e being traversed.

• For the InitialNode I , T (I) is equal to the through-
put of the global performance annotation if I is not
part of any StructuredActivityNode. Otherwise, T (I)
is equal to the throughput of the StructuredActivity-
Node it belongs to.

• For a JoinNode n, T (n) = mine∈i(n) T (e), since re-
quests in the least performing branch set the pace.

• For a MergeNode n, T (n) = ∑

e∈i(n) T (e), as requestsfrom mutually exclusive branches are reunited.
• For any other type of node n, T (n) = T (e1), where

e1 ∈ i(n) is its only incoming edge.
The algorithm traverses the model in breadth-first order,

starting from the InitialNode and continuing through its out-
going edges. This breadth-first order avoids computing the
same values several times by annotating each edge e and
node n with its value for T (e) and T (n), respectively. The
concurrentUsers attribute of the local performance annota-
tion of each ExecutableNode n is updated to T (n).

For example, let us compute T (Create Invoice) for the
model shown in Figure 3, which needs to handle T (I) = 1
request per second. The result can be computed as follows.
T (Create Invoice) = T (ForkNode in Process Segments)

= T (InitialNode in Process Segments)
= T (Process Segments)
= T (Divide Segments)
= 0.8 ⋅ T (Evaluate Order)

= 0.8 ⋅ T (I)
= 0.8

As we will see in Section 4.2.1, complexity is linear in
the size of the model (the number of nodes and edges) in the
model graph, as the algorithm time is dominated by the topo-
logical sorting stage, which can be efficiently implemented
by depth-first search, or obtained as a byproduct of Tarjan’s
algorithm for strongly-connected components [11].
3.3. Time limit computation

Computing the time limits of actions inside activities is
considerably more complex than computing their required
throughput. We will first devise an algorithm that produces
time limits by solving a linear programming problem. This
algorithm can be used as a test oracle and performance base-
line for better algorithms. In particular, later in this section,
an optimised graph-based algorithmwill be defined. Finally,
both algorithms will be applied to our running example.
3.3.1. Linear programming-based algorithm

The algorithm source code is publicly available at file
generate-glpk-input.egl in repository https://github.com/

agarciadom/sodmt. Next, we describe the algorithm in detail.
The simplest way to describe the computation of time

limits is expressing the problem declaratively by translating
its goal and constraints into an optimisation problem. Next,
we will formulate time limit computation as a linear pro-
gramming problem, which is quite convenient as efficient
tools for solving linear programs are readily available. First,
we present the problem if we only consider one layer and
then we generalise to several layers.
Linear programming-based algorithm: one layer

For the sake of simplicity, let us assume for a moment
that the model has only one layer, that is, that there are no
StructuredActivityNodes and, thus, there is only one Initial-
Node, I , at zero depth. LetN be the set of all ExecutableN-
odes, P = PS (I) be the set of all the reachable paths from
I , and PC (n) = {p ∣ p ∈ P ∧ n ∈ p} be the set of all the
paths in P that contain n.

In order to formulate the optimisation problem, we will
need to associate a value, Sw(n), to every n ∈ N . Sw(n)denotes the slack per unit of weight of node n. In other
words, this figure indicates the additional time beyond m(n)
that is assigned to n per unit of weight. Therefore, the res-
ulting time limit for a single execution of node n is given by
m(n) + Sw(n) ⋅ w(n) and the activity associated to the (ex-
ecutable) node n, which can be repeated r(n) times, should
terminate its execution in the following time interval:

[m(n) ⋅ r(n), (m(n) + Sw(n) ⋅w(n)) ⋅ r(n)]

Therefore, the time available can be maximised over all
paths for xn = Sw(n), resulting in more lenient time limits
whenever possible:

argmax
∑

p∈P

∑

n∈p
(m(n) + xn ⋅w(n)) ⋅ r(n) (1)
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However, there are two validity constraints to be taken
into account:
R1. Sw(n) ≥ 0, for all n ∈ N
R2. ∑n∈p(m(n) + Sw(n) ⋅w(n)) ⋅ r(n) ≤ L, for all p ∈ P

The first validity constraint just denotes that the assigned
times must not be negative. The second validity constraint
guarantees that the assigned times cannot make a path to vi-
olate the global time limit.

However, these two constraints are not enough, because
we could obtain unfair and undesired solutions. For example,
it would be valid (but not fair) to assign all the slack time to
the first node in a path, sharing no time with the rest of the
nodes. In order to avoid this situation, we introduce fairness
constraints ensuring that time values are evenly distributed
according to the weight of each activity.

First, it is clear that if an executable node n belongs to a
single path p, then an optimal value for Sw(n) is:

{ L − m(p)
w(p)

if w(p) > 0
0 if w(p) = 0

This would evenly distribute the remaining time after
taking into account the minimum time limits, L − m(p), in
proportion to the relative weight of the nodes belonging to p
over their sum, that is, w(p). Please, notice that if w(p) = 0
then Sw(n) = 0, as no time can be distributed.

However, an executable node might appear in several
paths. Fortunately, this scheme can be extended to nodes
appearing in multiple paths by introducing two fairness con-
straints and taking into account the strictest path for the node
under consideration:
R3. Sw(n) ≥ minp∈PC (n) {(L − m(p))∕w(p) | w(p) > 0},

for all n ∈ N .
R4. Sw(m) = Sw(n), for all m, n ∈ N such that PC (m) =

PC (n).
The first fairness constraint guarantees that the slack per

unit of weight is not shorter than the slack available on the
strictest path that n belongs to. The second fairness con-
straint ensures that whenever two nodes appear in the same
set of paths, the time remaining is distributed among them
in proportion to their weights.

This formulation induces the linear programming prob-
lem in Equation 2, which can be readily solved for a single
layer of the model graph. Please, notice that if the linear
problem is unfeasible, then the model contains inconsistent
requirements on the composition. For instance, if the global
time limit is 10 s and one of our actions requires at least 15 s,
no assignment of time will ever be possible. Therefore, our
algorithms could be used to check the validity of a model
from a semantic point of view, and developers can get repor-
ted of inconsistent or too demanding temporal requirements

at an early stage of the development process.

argmax
∑

p∈P

∑

n∈p
(m(n) + xn ⋅w(n)) ⋅ r(n)

subject to:
xn ≥ 0, for all n ∈ N
∑

n∈p
(m(n) + xn ⋅w(n)) ⋅ r(n) ≤ L, for all p ∈ P

xn ≥ min
p∈PC (n)

{

L − m(p)
w(p)

|

|

|

|

w(p) > 0
}

, for all n ∈ N

xm = xn, for all m, n ∈ N such that PC (m) = PC (n)

(2)

Linear programming-based algorithm: multiple layers
Generalising this approach tomodels with more than one

layer of depth is simple: our algorithm first runs on layer 0,
producing time limits for each topmost ExecutableNode (in-
cluding any StructuredActivityNode). Then, it is run on the
contents, lying in layer 1, of each StructuredActivityNode
in layer 0, using the previously computed time limits as its
“global” constraint. This process continues layer by layer,
until the whole model has been annotated.

The above formulation can be implemented in any of the
existing mathematical programming languages. In our case,
we have selected GMPL (GNUMathProg Language), which
is included in the GNU Linear Programming Kit3. GMPL is
a very concise notation for linear programming and a subset
of the AMPL language [12].

In GMPL, the problem can be split into two sections.
The model section describes the available parameters, vari-
ables, constraints and objective function. The data section
provides values for some of the parameters. This is useful
for reusing the same problem with different data. The final
result appears in Listing 1.
3.3.2. Graph-based algorithm

While the formulation based on linear programming is
easy to understand and implement, it suffers from an expo-
nential grow in the size of problem instances, since it needs
to check every path from the InitialNode. In this section, we
will introduce a graph-based algorithm that builds the set
of paths under study incrementally, by culling uninteresting
subpaths as soon as possible, therefore mitigating the impact
of a potential combinatorial explosion.

The algorithm source code is publicly available at file
time_limits.eol under https://github.com/agarciadom/sodmt.
A detailed account of the algorithm follows.

Again, in order to present the algorithm, we will sim-
plify the description by assuming that the model has only
one layer. Multiple layers are handled in the same way as in
the previous algorithm: once we have computed the values
for all the layer i ExecutableNodes, we apply our algorithm
to the contents of each StructuredActivityNode in layer i by
using the previously computed time limits as its “global” re-
quirement.

3http://www.gnu.org/software/glpk
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Listing 1: GMPL model used by the LP algorithm.
set A; # All executable nodes
set P; # All paths
param G; # Global time limit
param m{a in A}, default 0; # Minimum times
param w{a in A}, default 1; # Weights
param r{a in A}, default 1; # Repetitions

param paths{a in A, p in P}, default 0, binary;

# Paths (1 if action belongs to path)

# Total minimum time and weight of each path
param mp{p in P} := sum{a in A} paths[a, p] * m[a] * r[a];

param tw{p in P} := sum{a in A} paths[a, p] * w[a] * r[a];

# Minimum slack per unit of weight by task
param msuw{a in A} := min{p in P: paths[a, p] == 1 && tw[p] > 0} (G - mp[p]) / tw[p];

# Slack per unit of weight for each action (must be positive)
var suw{a in A} >= 0;

maximize usage: sum{a in A, p in P} (paths[a, p] * (suw[a] * w[a] + m[a]) * r[a]);

subject to glimit {p in P}: sum{a in A} (paths[a, p] * (suw[a] * w[a] + m[a]) * r[a]) <= G;

subject to minslack {a in A}: suw[a] >= msuw[a];

subject to samepaths {a in A, b in A: a < b && forall {p in P} paths[a, p] == paths[b, p]}: suw[a] == suw[b];

solve;

Wewill first introduce some additional notation. First, in
this section we say that the available time “flows” from the
InitialNode. If a node n receives 0 ≤ t(n) ≤ L seconds, then
every path p ∈ PS (n) receives t(p) = t(n) seconds to distrib-
ute among its nodes. Initially, we only know that t(I) = L.

If the local and global annotations are consistent with
each other, then t(p) ≥ m(p) for every path p: the minimum
time constraints of all actions are always met. The value
s(p) = t(p) − m(p) ≥ 0 is known as the slack of the path p
and it is distributed over p according to the weight of each
node: the slack per unit of weight initially assigned to each
node, denoted by Sw(p), is given by

{ s(p)
w(p)

if w(p) > 0
0 if w(p) = 0

Please, notice that w(p) = 0 implies Sw(p) = 0 becauseall nodes in p have a zero weight and, therefore, no slack can
be distributed.

The algorithm must ensure that whenever w(p) > 0, we
also have s(p) > 0, so that every path p with a non-zero
weight has some slack to distribute. If this condition is not
met or the annotations are inconsistent, then the user will be
notified and the execution will abort.

With these definitions, we can describe the algorithm as
a recursive function taking a node n and the time assigned to

it, t(n). Initially, n = I and t(n) = L, the global time limit.
The algorithm follows these steps:

1. Select two paths from PS (n) that, respectively, fulfilthe following properties:
• Let pms(n) be the path with the minimum value

of Sw(p) when t(n) seconds are available. In
case of a tie, pick the path with maximum w(p).

• Let pMm(n) be the path with the maximumm(p).
2. If s(pMm(n)) < 0, then the minimum time limits can-

not be satisfied: notify the user and abort the execu-
tion.

3. If s(pms(n)) = 0 and w(pms(n)) > 0, then there is no
slack in a path with a non-zero weight: notify the user
and abort the execution.

4. Set the time limit of n, that is, l(n), tom(n)+Sw(pms(n))⋅
w(n). The remaining timewill be TR = t(n)−l(n)⋅r(n)
seconds. Mark n as visited.

5. Sort each edge outgoing from n, that is, all edges such
that e ∈ o(n), in increasing order of Sw(pms(g(e)))with t(g(e)) = TR. This ensures that we continue
through the subpath starting at n that has the minimum
slack per unit of weight when TR seconds are avail-
able.

6. Visit each edge in o(n), as previously sorted:
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(a) If the target of e has been visited before, then
check whether the time which was sent to it, that
is, T ′R, is strictly less than TR, the time which
would have been sent through e. In that case, use
the surplus TR − T ′R seconds on the source of e
and its ancestors, and send T ′R seconds through
e. Go back in the graph from the source of e, col-
lecting nodes with non-zero weights into C until
a node with more than one incoming or outgo-
ing edge is found. Increase the time limit of each
collected node by

(TR − T ′R) ⋅w(n)
w(C)

where w(C) = ∑

n∈C w(n) ⋅ r(n).
(b) If the target of e has not been visited before, then

invoke this algorithm recursively, setting n to the
target of e and t(n) = TR.

We will justify that the graph-based algorithm produces
the same results as the algorithm based on linear program-
ming. In order to do this, we will show that the graph-based
algorithm ensures the validity and fairness constraints of the
linear program (R1 to R4 in Section 3.3.1), and that the graph
traversal order fulfils its maximisation objective.

The algorithm ensures R1 (slacks per weight are not neg-
ative) by checking, in Step 2, that the slack of the path with
the highest minimum time is not negative. The corner case
where there is no slack in a path with a non-zero weight is
considered in Step 3.

The algorithm ensures R2 (time limits cannot make a
path to violate the global time limit) by transferring the re-
maining time from node to node. That is, each node re-
ceives all the available time and passes unassigned time (the
amount of time not assigned to it) to the next. When time
limits are increased, see Step 6a, we take into account the
time that was not used by the nodes reached after the cur-
rently analysed node.

Concerning R3 (slacks per weight are greater than or
equal to the one corresponding to the most strictest path con-
taining the corresponding node), the algorithm uses m(n) +
Sw(pms(n))⋅w(n), in Step 4, to compute the time limit. In ad-
dition, in Step 5, the algorithm traverses the outgoing edges
in decreasing order of strictness. Therefore, node n is tra-
versed for the first time when pms(n) (the strictest path in-
cluding n) is being analysed, and the assigned value is given
by the minimum in R3.

R4 (slacks per weight of two nodes appearing in the same
set of paths is the same) is also ensured by Step 4. Essen-
tially, two nodes a and b will be in the same paths if they
are consecutive nodes and there are no alternatives. In this
situation, it can be proved that Sw(pms(a)) = Sw(pms(b)).Finally, the maximisation of the available time computed
in Equation 2 is achieved in Step 6a. Once the strictest path
has been completely covered, the algorithm will consider
pending edges, traversing less strict subpaths. Note that these
paths might have nodes whose time limits where previously

computed as part of stricter paths, leaving additional time
available to the nodes that are traversed for the first time
as part of the corresponding path. In compliance with R4,
this extra time is distributed in Step 6a by using an order-
ing between edges so as to guarantee that the same slack per
weight is assigned to nodes appearing in the same path.

This could be named the exhaustive version of the graph-
based algorithm. However, an incremental version is also
possible if we carefully apply some key optimisations. Next,
we describe this incremental approach, which considerably
improves the performance of the algorithm.
3.3.3. Key optimisations of the graph-based algorithm

The graph-based algorithm uses several optimisations to
improve its performance. First of all, a path p is not repres-
ented by its sequence of nodes, but by its constraint c(p) =
(m(p), w(p)), saving much memory.

Second, in order to select pMm(n) at each node we need
to know the maximum m(p) for each path p ∈ PS (n), whichwe will denote by m(pMm(n)) or simply Mm(n). We can
compute it in advance using with the following equation:

Mm(n) = m(pMm(n))
= m(n) ⋅ r(n) + max

{

Mm(g(e)) ∣ e ∈ o(n)
} (3)

Since (3) is recursive, we can evaluate it incrementally,
starting from the FinalNodes (for which Mm(n) = 0) and
going back up to the InitialNode in reverse topological order.

Third, to select pms(n) at each node we need to know the
strictest path starting from it. We cannot compute it in ad-
vance, as it depends on the time received by the node, t(n),
which is not known a priori. Instead, we will remove re-
dundant paths from PS (n). We will call this reduced set
P ′S (n). A path pa ∈ PS (n) is removed when it is said to be
always less or just as strict than some other path pb ∈ PS (n),independently of the time received by n or the common an-
cestors of pa and pb. We denote this by c(pa) ⪯s(L) c(pb),and define it formally as follows:

(a, b) ⪯s(L) (c, d) ≡
∀t ∈ [0, L] ∀x ∈ [0, L] ∀y ≥ 0

a + x ≤ t ∧ c + x ≤ t ∧
b + y > 0 ∧ d + y > 0 ⇒
t − (a + x)

b + y
≥ t − (c + x)

d + y

(4)

After a lengthy simplification, the right side of (4) can
be replaced by:

a ≤ c ∧ (b ≤ d ∨ (b − d) ⋅ L ≤ b ⋅ c − a ⋅ d) (5)
Equations (4) and (5) would consider all pairs of the form

(L, x) to be just as strict. We could further reduce the number
of paths to be evaluated and still obtain the same results by
considering the (L, x) pair with the highest value of x as the
strictest one. This results in our revised and final definition
of ⪯s(L):

a ≤ c ∧ (b ≤ d ∨ (a < L∧ (b−d) ⋅L ≤ b ⋅ c−a ⋅d)) (6)
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Listing 2: GMPL data for layer 0 of the example in Figure 3.
set A := "Evaluate Order", "Divide into Segments", "Close Order", "Process Segments";

set P := p_1 p_2;

param G := 1.0;

param m := "Evaluate Order" 0.4;

param w := "Evaluate Order" 0.0;

param r := "Process Segments" 5.0;

param paths :=

[*, p_1] "Evaluate Order" 1 "Close Order" 1

[*, p_2] "Evaluate Order" 1 "Divide into Segments" 1 "Process Segments" 1 "Close Order" 1;

end;

Listing 3: GMPL data for layer 1 of the example in Figure 3.
set A := "Perform Payment", "Create Invoice", "Ship Order";

set P := p_1 p_2;

param G := 0.08571428571428572;

param paths :=

[*, p_1] "Create Invoice" 1 "Perform Payment" 1

[*, p_2] "Ship Order" 1;

end;

It can be proved that this defines a partial order (a reflex-
ive, antisymmetric, and transitive binary relation) on C(L).
The proof is omitted for the sake of brevity.

Finally, like Mm(n), P ′S (n) can also be computed incre-
mentally by traversing the graph in reverse topological order.
Let ni be a child of n. Let pa and pb be two paths in PS (ni),so that c(pa) ⪯s(L) c(pb). By definition, pa is less or just asstrict as pb regardless of their common ancestors, so ⟨n⟩+pawill also be discarded from P ′S (n) over ⟨n⟩+ pb. This means
that instead of comparing every path in PS (n) for every node
n, we can build P ′S (n) by adding n at the beginning of the
paths in P ′S (ni), for every child ni of n, and then filtering theredundant paths using ⪯s(L).Letmax⪯s(L)

S select the paths inS which are not always
less strict than any other (the maximal elements according to
⪯s(L)). We define P ′S (n) as:

P ′S (n) = max⪯s(L)

{

t ∣ e ∈ o(n) ∧ (M,W ) ∈ P ′S (g(e))
} (7)

where t = (m(n) ⋅ r(n) +M,w(n) ⋅ r(n) +W ).
Finally, please notice that P ′S (f ) = PS (f ) = {(0, 0)}

when f is a final node.
The source code of the resulting algorithm, which in-

cludes all the optimisations, is publicly available at file time_
limits_new.eol under https://github.com/agarciadom/sodmt.
3.3.4. Examples

In this section we apply the two previous algorithms to
our running example given in Figure 3. The global time limit
will be set in both cases to L = 1 second. We will shorten
action names to their initials when necessary. For example,
“Evaluate Order” will be simply “EO”.

Concerning the LP algorithm, we need to encode our
model intoGMPL for each layer of themodel. This is straight-
forward as can be seen in Listing 2 (where layer 0 is defined).
As for the time limits, the results for this layer were of 0.086 s
for “Evaluate Order” (EO), “Divide into Segments” (DS),
“Close Order” (CO) and each repetition of “Process Seg-
ments” (PS). Using these results, we produce the code given
in Listing 3, where minimum times, weights and repetitions
use the default values of 0, 1 and 1, respectively. The result-
ing time limits were of 0.043 s for “Perform Payment” (PP)
and “Create Invoice” (CI) and 0.086 s for “Ship Order” (SO).
Therefore, we have obtained a time limit for each of the six
basic actions that conform our model (please, notice that the
value for “Process Segments”, computed at layer 0, is used to
compute the values corresponding to the three basic actions
processes at layer 1).

The execution trace of the graph-based algorithm over
layers 0 and 1 of the running example is shown in Figure 4.
In the upper part of Figure 4, showing layer 0, we consider
L = 1 s. Every ExecutableNode is annotated with its min-
imum time limitm, its weightw and its number of repetitions
r. The first pass will produce, from all subpaths starting at
each node n, the maximum total minimum time limitMm(n)and the maximal constraints P ′S (n).First,Mm(n) and P ′S (n) are precomputed over layer 0:

• Mm(CO) = 0, P ′S (CO) = {(0, 1)}.
• Mm(PS) = 0, P ′S (PP) = {(0, 6)} (since PS has r = 5).
• Mm(DS) = 0, P ′S (DS) = {(0, 7)}.
• Mm(EO) = 0.4, P ′S (EO) = {(0.4, 7)}.
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Mm = 0
P ′
S = {(0, 2)}
t = 0.086

Mm = 0
P ′
S = {(0, 2)}
t = 0.086

Ship Order
m = 0 w = 1 r = 1

Mm = 0 P ′
S = {(0, 1)}

t = 0.086 l = 0.086

Mm = 0
P ′
S = {(0, 0)}
t = 0

Create Invoice
m = 0 w = 1 r = 1

Mm = 0 P ′
S = {(0, 2)}

t = 0.086 l = 0.043

Perform Payment
m = 0 w = 1 r = 1

Mm = 0 P ′
S = {(0, 1)}

t = 0.043 l = 0.043

Mm = 0
P ′
S = {(0, 0)}
t = 0

(b) Layer 1

Figure 4: Execution traces for the graph-based time limit algorithm on layers 0 and 1 of the running example in Figure 3.

Using the maximal constraint (0.4, 7), we know that the
slack per unit of weight on the strictest path will be equal to
1−0.4
7 ≈ 0.086 seconds. After that, the algorithm sends the

available time (L = 1 s) into the InitialNode and then into
EO. EO takes 0.4 s and sends the remaining 0.6 s through
the DecisionNode to DS, which takes 0.086 s and sends the
remaining 0.514 s to PS. PS takes 0.086 s for each of its 5
repetitions and sends the remaining 0.086 s to CO through
the JoinNode.

The algorithm then continues over the contents of “Pro-
cess Segments”, using its time limit as the new global time
limit. In the lower part of Figure 4, we can see that layer 1
is comprised of the contents of “Process Segments” and its
global time limit L = 0.086, as computed in layer 0. Mm(n)

and P ′S (n) are computed in the same way as before. SO takes
the full 0.086 s, being the only ExecutableNode in its path.
CI and PP take half of L each: 0.043 s.

As expected, both algorithms return the same results.
However, in this simple example we are not able to appreci-
ate the exponential explosion underlying the LP algorithm.
In the next section we will perform a thorough evaluation of
the algorithms to analise their performance.

4. Evaluation of the algorithms
In the previous sections we have described the models

used by the algorithms and the algorithms themselves. We
will devote this section to evaluating their performance on
our reference implementations.
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Figure 5: Screenshot of the Eclipse-based model editor.

4.1. Implementation
We have implemented the models and algorithms in this

paper as a set of Eclipse plug-ins. The source code uses a
mix of several task-specific model handling languages from
the Epsilon family [13].

The models corresponding to our web service compos-
itions can be created using a graph-oriented graphical ed-
itor. To ensure that the algorithms can be applied, our tool
is able to validate the models automatically, providing error
and warning markers and “quick fixes” to assist the user in
correcting invalid models. The algorithms can be launched
from the contextual menu of our graphical editor (see Fig-
ure 5).

The throughput computation algorithm and the graph-
based time limit computation algorithm have been tested on
a set of manually designed test cases, using the EUnit frame-
work [14] included in Epsilon4. In addition, the graph-based
time limit computation algorithm has been testedwith a large
set of automatically generated models, ensuring that its res-
ults were equivalent to those of the linear programming-based
algorithm (barring negligible differences due to floating-point
propagation errors).
4.2. Theoretical performance

Before evaluating the empirical performance of our al-
gorithms, we will compute some upper bounds on their ex-
ecution costs from their definitions. In this section we will
also define several graph shapes for our models. We will use
these shapes throughout the theoretical and empirical per-
formance analyses of the time limit computation algorithms.

4http://www.eclipse.org/epsilon/doc/eunit

4.2.1. Throughput computation
The performance of this algorithm is quite simple to ana-

lyse. If we visit the nodes in topological order, then the algo-
rithm will only need to visit each node once. For each node,
the algorithm will compute a constant-time expression on
every incoming edge (multiplications for conditional edges,
scalar comparisons for JoinNodes and sums for MergeN-
odes). These operations are executed with finite precision
and are, thus, in Θ(1).

Consider a model with n nodes and e edges. Since the
algorithm visits each node and edge exactly once and spends
a constant amount of time on each of them, the algorithm
will require O(n + e) operations. If the underlying graph is
dense, then e ∈ Θ(n2) and O(n + e) becomes simply O(n2).
4.2.2. LP-based time limit computation

The time limit computation algorithms are harder to ana-
lyse than the throughput computation algorithm, as their per-
formance depends on the structure of the underlying graph.
For this reason, we will define three graph shapes for our
models.

1. Sequence models consist of an InitialNode followed
by one ormoreAction nodes in sequence, with aFinal-
Node at the end. Sequence models have 1 path each.
A graphical representation is shown in Figure 6(a).

2. Decision-mergemodels have an InitialNode, followed
by a sequence of f levels. Each level has a Decision-
Node with two branches with a single Action, merged
before the next level. The model has 2 + 4 ⋅ f nodes
and 1+5 ⋅f edges in total, and there are 2f paths from
the InitialNode to the FinalNode.
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(a) Sequence: 2 Action nodes

A11

A12

A21
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1 level

(b) Decision-merge: 2 levels

A1 A2

1 level

(c) Dense: 2 levels

Figure 6: Graph shapes used in the performance analyses

Component O(RC) O(IGT) O(TT)

Objective function n ⋅ p n ⋅ p
R1: Sw(n) ≥ 0 n 1 n
R2: L per path p n n ⋅ p
R3: minimum Sw n n ⋅ p n2 ⋅ p
R4: same paths n2 p n2 ⋅ p

Total n2 + p n2 ⋅ p

Table 1
Restriction Counts, Individual Generation Time and Total
Time for the LP-based algorithm, by component.

Shape O(N) O(P) O(RC) O(TT)

Sequence, n nodes n 1 n2 n2
Decision-merge, f levels f 2f 2f n2 ⋅ 2f
Dense, f levels f (f + 1)! (f + 1)! n2 ⋅ (f + 1)!

Table 2
Nodes, Paths, Restriction Counts and Total Time for the
LP-based algorithm, by graph shape, using the results from
Table 1.

3. Dense models have an InitialNode, followed by a se-
quence of f levels, like the decision-merge models.
However, the structure of each level is different: aDe-
cisionNode picks between running an Action or jump-
ing to any of the following levels. The model has
2 + 3 ⋅ f nodes and 1 + 3 ⋅ f +∑f

i=1 i edges. Finally,there are (f + 1)! paths from the InitialNode to the
FinalNode. These models have many more edges and
paths than the decision-merge models: in fact, they
represent the densest graph that we can build with this
combination of nodes.

With these shapes in mind, let us go back to analysing
the performance of the linear programming-based time limit

computation algorithm. Since there are many methods for
solving LP problems (some of them are very efficient on the
average case), we will focus instead on the size of the res-
ulting LP problem. If we have a model with n nodes and
p paths from the InitialNode to the FinalNode, then the LP
problem will have n variables and will consist of an object-
ive function which can be generated in O(n ⋅ p) time and the
following restrictions:

• The slack per unit of weight must be positive (R1):
one per node. Each restriction can be generated in
O(1) time.

• The global time limit must be honoured (R2): one per
path, generated in O(n) time by traversing every node
in the path.

• The lower bound on the slack per unit of weight for
every node (R3): one per node, generated in O(n ⋅ p)
time by traversing every path and computingm(p) and
w(p) for it.

• The slack per unit of weight must be equal for all (m, n)
pairs of nodes in the same paths (R4): one for every
such pair, generated or discarded inO(p) time by com-
paring PC (m) and PC (n).

These results are aggregated in Table 1. We can con-
clude that we will generateO(n2+p) restrictions inO(n2 ⋅p)
operations. Table 2 applies these results to each of the three
graph shapes in Figure 6. We can see that the rapidly in-
creasing number of paths in the model is the main limiting
factor for applying the algorithm to more complex models.
4.2.3. Graph-based time limit computation

Analysing the graph-based time limit computation algo-
rithm is harder than analysing the LP-based algorithm. Ac-
tually, most models found in practice are sparse, not dense:
the number of edges is linear in the number of nodes. Within
these sparsemodels, theworst scenario ariseswhen diamond-
like structures (decision-merge or fork-join) chain together
in long sequences. Then, the number of paths grows ex-
ponentially with the number of nodes. Regarding complex-
ity, graph-based algorithms traversing paths to compute time
limits are heavily impacted by an exponential increase in the
number of paths. Thus, decision-merge models represent a
worst case for sparse models.

Consequently, we will limit our analysis in this case to
decision-merge models. Let us analyse the algorithm in the
worst case by parts:

• Computing Mm(n) in advance for each node always
takes O(1) ⋅ O(n) = O(n) operations, as it requires
evaluating an arithmetic expression over the O(1) in-
coming edges of each of the n nodes.

• Computing P ′S (n) in advance for each node is actuallythe most expensive part of the algorithm: in the worst
case, O(2f ) paths need to be considered at every node
and selecting the strictest ones takesO(4f ) operations
per node and O(n ⋅ 4f ) in total.
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• The last step depends on the number of elements of
P ′S (n) for each node n in the graph: in the worst case,
|P ′S (n)| = |PS (n)| (no paths have been removed) for
every node n and O(n ⋅ 2f ) operations are required.

Joining the three parts of the algorithm yields a time of
O(n ⋅ 4f ) operations in the worst case for a decision-merge
model. The absolute worst case is very expensive. However,
it is also very rare, as we will see in Section 4.3.4.
4.3. Empirical performance

In the previous section we studied the definitions of the
algorithms to derive several upper bounds for their execution
times. We concluded that the throughput algorithm required
O(n2) operations, the LP-based time limit computation al-
gorithm required O(n2 ⋅ 2f ) operations for decision-merge
models with f levels and the graph-based time limit compu-
tation algorithm required O(n ⋅ 4f ) operations for the same
decision-merge models.

However, we also concluded that these were very loose
upper bounds, due to limitations in our analysis. For this
reason, in this section we will discuss the results of several
experiments based on the actual execution of the algorithms
on a set of automatically generated models.5 We will show
that the graph-based algorithm requires much less time to
run in practice than the LP-based algorithm, and that it does
not show the exponential growth which would be expected
from the previous upper bound. This is because the worst
case becomes harder to find as models become more com-
plex, as we show at the end of this section.

The performance tests were run in an inexpensive laptop
computer, based on an Intel CPU at 1.73GHz with 4GiB
DDR3 RAM, using Eclipse and Epsilon. Wall clock times
were measured using the facilities provided by the Java Vir-
tual Machine (JVM), ensuring other processes remained idle
during the tests. The studies in Sections 4.3.1, 4.3.2 and 4.3.3
were conducted using an Eclipse plug-in that we built for this
study. We ported parts of the graph-based time limit algo-
rithm to C++ for the study in Section 4.3.4.
4.3.1. Throughput computation

Figure 7 shows the average execution times correspond-
ing to the throughput computation algorithm for the three
graph shapes described in Figure 6. The generated models
had between 0 and 50 actions: decision-merge models had
between 0 and 25 levels, and dense models had between 0
and 50 levels.

The algorithm shows the expected level of performance
for decision-merge and sequence models. A model with 50
actions in a sequencemodel only takes 0.04 s, and a decision-
merge model with 50 actions takes 0.07 s. A dense model
with 50 actions takes somewhat longer, requiring 0.46 s. This
confirms our previous O(n + e) bound for the algorithm:
sparse graphs exhibit linear growth in the number of nodes

5The models were produced using purpose-built Java code that gen-
erated models with the desired shapes and added random performance an-
notations.

0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.0368

0.0682

0.4588

Size (actions)

T
im

e
(s
ec
on

d
s)

Sequence
Decision-merge

Dense

Figure 7: Average execution times over 10 runs for the
throughput computation algorithm, by graph shape and size. X
axis step was 1 for dense/sequence graphs, and 2 for decision-
merge graphs.

and edges, while dense graphs show quadratic growth in the
number of nodes.
4.3.2. Comparison between the time limit algorithms

Figure 8 compares the times required by the LP-based
and graph-based time limit computation algorithms for the
three graph shapes listed in Figure 6. All Action nodes were
annotated with uniform random minimum times (between 0
and 0.5L) and weights (up to 10). Execution times are rep-
resented in a base-10 logarithmic scale. In this case, because
of the rapid increase in cost of the LP-based algorithm, we
had to limit the maximum size of the models. Decision-
merge models were limited to 20 actions (10 levels), and
dense models were limited to 20 actions (20 levels).

From the results for the sequence models, it may seem
that the graph-based algorithm may be better than the LP-
based algorithm even for small models. However, it is im-
portant to remark that the LP-based algorithm needs to in-
voke an external program (the LP solver), while the graph-
based algorithm runs entirely within the JVM. Using a Java-
based LP solver couldmake the LP algorithm faster for small
inputs, but it would not change the result for larger ones, as
problem sizes grow very fast for the LP-based algorithm.

During these tests, we checked that the results produced
by both algorithms were the same, except for a minimal er-
ror margin (0.1%) due to floating-point rounding and error
propagation. More formally, if rl and rg were the results of
the LP-based and graph-based algorithm for the same input
model, we verified that |rl−rg |

max{rl ,rg}
≤ 0.001.

4.3.3. Influence of annotations on the graph-based
time limit algorithm

After concluding that the graph-based time limit algo-
rithmwas clearly superior to the LP-based algorithm, we de-
cided to study the effect of the manual performance annota-
tions on the graph-based time limit algorithm. Depending on
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Figure 8: Average execution times over 10 runs for the time limit computation algorithms, by graph shape and size, with L = 100 s.
X axis step was 1 for dense/sequence graphs, and 2 for decision-merge graphs.
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Figure 9: Average execution times over 100 runs for the graph-based time limit computation algorithm. X axis step was 1 for
dense/sequence graphs, and 2 for decision-merge graphs.

the actual values used in this annotation, the algorithm may
be unable to discard some paths, reducing the effectiveness
of its optimisations over the LP-based algorithm.

To study the impact of this issue on performance, we
measured the average time required by the graph-based time
limit algorithm over 100 runs for each graph shape and size.
We annotated either 0%, 50% or 100% of all ExecutableN-
odes with randomly generated performance annotations. Res-
ults are shown in Figure 9. We present the results by graph
shape, graph size and percentage of Activity nodes with uni-
formly random performance annotations. We have set L
to 100 s, minimum time limits ranged between 0 and 0.5L
and weights ranged between 0 and 10. Finally, please notice
that execution times are represented in a decimal logarithmic
scale.

It is interesting tomention that only decision-mergemod-
els show notable differences between annotating 0%, 50% or
100% of all ExecutableNodes. This is obvious for sequence
models, which only have one path, but it might be surpris-
ing for dense models, which have f ! paths for a model with
f levels. This is because of Equation (6) and the structure
of our dense models. If we need to choose between a sub-
path (m,w) that does not run a certain node with minimum

time ma and weightwa, and a subpath (m+ma, w+wa) thatdoes, by Equation (6) we will discard (m,w) and only keep
(m+ma, w+wa). For this reason, at each DecisionNode we
will only need to consider one subpath to find the strictest
path from the InitialNode to the FinalNode. The observed
faster-than-linear growth for dense models can be attributed
to the need to traverse allO(f 2) edges to precomputeMm(n)for each node.

Going back to decision-merge models, we can see that
annotating all ExecutableNodes with custom local perform-
ance annotations is more expensive than always using the
default zero minimum time and unit weight. This can also
be explained through Equation (6): when using the default
performance annotations, it is always the case that a = c = 0
and Equation (6) can be simplified into b ≤ d, which is a
total order. In that case, we can remove many more paths
and the optimisations are much more effective. Otherwise,
some paths may not be comparable (as ⪯s(L) is a partial or-der) and execution costs will increase. Nevertheless, even
when all ExecutableNodes are annotated, execution times
do not show the exponential growth of the LP-based algo-
rithm.
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Figure 10: Percentages of sampled 3-level decision-merge
models with a certain number of top-level incomparable paths,
4 incomparable paths at the second level and 2 incomparable
paths at the last level, by values of the global time limit L.

4.3.4. Worst case of the graph-based time limit
computation algorithm

So far, we have shown that removing redundant paths is
effective in avoiding the exponential growth in cost that af-
fected the LP-based time limit computation algorithm. How-
ever, its effectiveness depends on the values of the annota-
tions used in the model. Taking a closer look at Equation (6),
we can see that it depends on the relative magnitude of the
minimum time limits and weights with regards to the global
time limit L. The left operand of (b − d) ⋅ L < b ⋅ c − a ⋅ d,
part of Equation(6), grows as L increases and reduces the
number of comparable pairs of paths.

We performed an additional study to clarify how com-
mon the absolute worst case was and study its relationship
with L. We sampled with L = 0.5 s and L = 1.5 s the
space of all decision-merge models with 3 levels which con-
tained a 2-level decision-merge with 4 incomparable paths.
Minimum times for the ExecutableNodes ranged from 0 to
min{L, 1}, in steps of 0.1 s. Weights ranged from 0 to 10,
in steps of 1 unit. Inconsistent models were discarded. For
each model, we measured the number of incomparable paths
at the initial node (“top-level paths”): in a 3-level decision-
merge model, there can be between 1 and 23 = 8 such paths.

Evaluating 1.99 × 106 decision-merge activities for L =
0.5 s and 7.16 × 109 for L = 1.5 s produced the results in
Figure 10. For L = 0.5 s, less than 10% of these models had
more than 1 incomparable path. With L = 1.5 s, less than
20%s of the models had more than 2 incomparable paths.

Furthermore, it is interesting to remark that forL = 1.5 s,
while 31.8% of all 1-level decision-mergemodels were in the
worst case, only 2.5% 2-level decision-merge models were
in the worst case. With 3 levels, it was further reduced to
0.05%. This suggests that the absolute worst case becomes
harder to find as models become more complex, explaining
why average times did not grow exponentially in Figure 9.
Additionally, it indicates that the worst case becomes more

common as L grows in relation to the values used in the an-
notations.

5. Threats to the validity and usability of the
framework
In this section we briefly review some potential issues

that might hinder the applicability of our proposal. Please
see Section 7 for future work on some of these issues.

First of all, our framework considers a static workflow.
This allows us to accurately estimate some parameters from
themodel, e.g. bounds on the number of iterations that might
be performed. However, if our framework is to be applied to
dynamic compositions, then it should be expected that the
accuracy will decrease, as there are some parameters that
cannot be statically inferred. As a mitigation, our algorithms
could be run in the background periodically and fed with in-
formation from the execution of services. Of course, this is
a delicate balance and it is not easy to determine in advance
how often the estimation algorithms should be executed, so
that they do not drain too many resources from the execution
environment and degrade the performance of the composi-
tion. That would certainly improve the results, but precise
estimation in the presence of dynamic compositions would
likely require a different approach.

Second, we currently rely on the user to provide the relat-
ive measure of the computational intensity of each node, that
is, the node weight. This assumes that our user is a domain
expert or, at least, she has enough knowledge of the services
involved. Although weights are optional parameters in our
framework, it would be desirable to have a (semi-)automatic
process to set them to plausible values. In absence of ser-
vice provider information on expected execution times, and
given the likely variability of execution times for the same
service on different inputs, a statistical or machine learning
(ML) approach would probably be the most appropriate.

Third, in their current form, the algorithms do not take
into account the fact that the same web service may be in-
voked several times from different points in a composition
or in different composition. In fact, in BPMN, there can be
call activities invoking a global process or a global task from
different points and it would be useful that our framework
could cope with these situations. One approach is chan-
ging the underlying model into labelled graphs, where the
edges would be labelled to keep track of the inbound and
outbound activity nodes during the traversal of an execu-
tion node. However, adapting the algorithms to this model
may not be trivial, particularly the iterative version of the
graph-based algorithm, which is our most efficient version
developed so far. In this line, the LP-based time limit in-
ference algorithm could be extended by including new con-
straints in the linear programs. However, the graph-based al-
gorithmwould not accommodate those additional constraints,
but it could assign the strictest time limit inferred among all
its occurrences. We discuss this in more detail in Section 7.

Fourth, we have considered dense decision-merge mod-
els up to 50 levels and this might be, in principle, a lim-
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itation in the experimental justification of our framework.
However, this number of levels allowed us to consistently
obtain execution times in the order of seconds with main-
stream computers. In our experience, models with less than
this number of levels are quite common. In fact, we think
that creating huge models instead of structuring them hier-
archically may not be the best modelling practice. Over a
certain size, models should be decomposed into manageable
ones that can be easier to understand both by the modeller
and the stakeholders. Moreover, if we couple the model size
with the complexity of the corresponding algorithms and the
experimental execution times obtained for the test data un-
der consideration, we expect that scalability is guaranteed
for models bigger than those present in our test data.

Finally, our framework relies on fairness to allocate slack
and thismight lead to potential inaccuracy in estimates. There
are several techniques to cope with this, from sensitivity ana-
lysis to ML, that can be considered for future work. Also
related to this, it is not easy to estimate the number of iter-
ations in a process loop. In this case, we take into account
that, usually, underestimation is more dangerous than over-
estimation. There are often two ways to get more precise es-
timates: expert reviews and sampling profiling. We discuss
this in more detail in Section 7.

6. Related work
Obtaining the desired level of performance has been a

regular concern since the development of the first computer
systems, as shown by an early survey [15]. There are basic-
ally two approaches: evaluating a model of a system (known
as performance engineering), or measuring the performance
of an implemented system (performance testing). These ap-
proaches are complementary: using analytic models reduces
the risk of implementing an inefficient software architec-
ture, which is expensive to rework [16]. When the system is
implemented, measuring its performance is more accurate,
and can detect not only design issues, but also bad coding
practices and unexpected workloads or platform issues [17].
Some authors have proposed overloading “performance en-
gineering” to point to both model- and measuring-based ap-
proaches [18].

Throughout this section, we will briefly review some of
the works that are more closely related to ours. We will
first visit the existing notations, mainly focusing on well-
established standards. Later on, we will discuss some of the
performance analysis algorithms that are more closely re-
lated to ours. Finally, we will point to some works in service
selection.
6.1. Notations

Widespread adoption ofUML as a de facto standard nota-
tion has prompted researchers to derive their analytic models
from UML models, first with custom annotations and later
consolidating on standard extensions to UML, such as the
Schedulability, Performability and Time (SPT) profile [19].
When UML 2.0 was published, OMG saw the need to up-
date the SPT profile and harmonise it with other new con-

cepts. This resulted in the MARTE (Modelling and Ana-
lysis of Real-Time and Embedded Systems) profile [20]. The
MARTE profile defines a general framework for describing
QoS aspects. Our work uses models based on UML activity
diagrams with custom extensions to simplify the discussion
away from the technical details of the MARTE notation and
its VSL sublanguage.

Performance engineering usually involves building a sim-
plified representation (a model) with information on each
part of the system, from which the expected global perform-
ance is derived. There is a large number of works dealing
with model-based testing, i.e. “the automatable derivation
of concrete test cases from abstract formal models, and their
execution” [21, 22]. Although most of the work considers
functional testing, model-based testing can be used to ana-
lyse performance aspects in distributed environments such
as the cloud [23]. Unfortunately, the notations and methods
usually considered in model-based testing are very far from
the focus of this article: we consider a UML-like notation to
infer quantities of interest.

Queueing networkswere among the first formalisms used
for performance engineering. A classical example of this
formalism is the PRIMA-UML methodology [24]. While
our work is focused on producing local performance require-
ments, PRIMA-UML is oriented towards validating the early
design of the system using the EQNM. Therefore, we believe
that both works complement each other.

Currently, the most common formalisms in performance
engineering are layered queuing networks [25], stochastic
Petri Nets [26] and stochastic Process Algebras [27]. These
formalisms are backed by in-depth research and the last two
have solid mathematical foundations in Markov chain the-
ory. However, they introduce an additional layer of com-
plexity which might discourage some users from applying
these techniques. This burdenmight be ameliorated by using
recent work that shows progress in learning some of these
models [28].

Recently, we have considered provenance graphs to log
changes to a run-time model [29]. However, the notation is
far from ours and the focus is on showing how provenance
graphs can support the validation of systems.
6.2. Algorithms

Our algorithms compute local performance constraints
for the various pieces of software that participate in a web
service composition. Web Service compositions are mod-
elled using UML activity diagrams, which define a workflow
from an initial node to a set of final nodes.

There are many other works on performance estimation
based on workflows. However, to the best of our knowledge,
they focus on computing the global performance of thework-
flow from a set of local annotations. Our approach works
in the opposite direction: it estimates the local performance
which should be required of the composedweb services from
the global performance constraint set by the user.

The SWR algorithm [30] computes the expected QoS of
the workflow given the QoS of the services involved. In a
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sense, its goal is the opposite to ours: our algorithms com-
pute performance requirements for the services from their
compositions, while this work computes the expected QoS
of the entire composition from the knownQoS of its services
by iteratively reducing its graph model to a single task.

Moving beyond workflows, and into entire software sys-
tems,MARTEwas extendedwith theDependability and Ana-
lysis Modeling sub-profile [31]. Our work also handles time
limits, but our focus is different: we help the user “fill in
the blanks” using the available partial information. It is pos-
sible to generate intermediate performance models from a
set of UML diagrams annotated with the MARTE profile,
describing a service-oriented architecture [32]. In this ap-
proach, activity diagrams model the workflows, component
diagrams represent the architecture and sequence diagrams
detail the behaviour of each action in the workflows. Our
approach does not model the resources used by the system:
we assume performance tests will be run in an environment
that mimics the production environment.

Finally, Integer Linear Programming (ILP) has been pre-
viously used in the context of WS-BPEL compositions. In
particular, we have used it to reduce the size of test suites [33].
ILP has been also used to select which services should be
used in a web service composition [34]. Nevertheless, the
aim of these approaches is quite different to ours: while they
focus on selecting test cases/services from a pool of candid-
ates, we intend to provide a first estimate of performance
requirements during early analysis and design.
6.3. Service selection

Although in this paper we are mainly interested on per-
formance, a related problem is to select services according
to certain criteria [35, 36], which can be done using different
approaches. For example, a global optimal selection strategy
can be implemented by using dynamic programming [37]
while other approaches consider algorithms such that QoS
constraints guide the selection of services [38, 39]

7. Conclusions and future work
Modern software architecture design has seen a rise in

the application of the SOA paradigm to the implementation
of large scale software applications, in particular, web ser-
vice compositions integrating both in-house and third-party
services. One of the main issues when designing these com-
positions is the fair estimation of their required perform-
ance in a context where QoS information may be incom-
plete or even missing. Along these lines, this approach in-
troduces dependencies on the performance of the integrated
services, which instead determines the overall performance
of the whole composition. Although QoS information of
an in-house service may be available through its SLA or in-
ferred from statistical data (historical data or data provided
bymonitoring), reliable performance-related information can
be more difficult to obtain in the case of third-party services.
Besides, this information is often unavailable when design-
ing new service compositions from the ground up.

The expected performance of web services may be hard
to assess and it is easy to wrongly estimate the related QoS
information that is really required by the client without con-
ducting proper stress testing, which is not always possible.
In fact, when using third-party web services there may be
not enough information available to make anything beyond
an educated guess. If the guess is wrong, revising all the es-
timations and how they affect the web service composition
integrating these services soon becomes a long, tedious, and
error-prone process.

In this paper, we have presented three algorithms for com-
puting the local performance requirements of services from
the global performance requirements of the service compos-
ition that integrates them. The composition is modelled in
a workflow-based graphical language, formally defined by a
metamodel based on UML activity diagrams with perform-
ance annotations. This language is simple enough to allow
for translations from other workflow-based languages like
BPMN 2.0.

Each of the three algorithms receives a model of the ser-
vice composition annotated with the required throughput,
that is, the peak number of concurrent users or requests per
second that should be processed, and the global time limit
or maximum execution time. The first algorithm is based on
topological sorting and computes the throughput (requests
per second) corresponding to each service. The second algo-
rithm is based on linear programming (LP) and computes the
time limit for each service, which provides an upper bound
of the time available to process each request. The time limits
assigned are fair in a precise sense. The third algorithm is
a time limit computation algorithm too and yields the same
results that the second algorithm. This graph-based algo-
rithm it is more efficient than its LP counterpart.

The time limit computation algorithms can combine the
global performance annotation with optional local perform-
ance annotations that model the partial knowledge of the de-
veloper about the expected performance and computational
cost of the services. The algorithms have been implemented
using several languages from the Epsilon family [13], a set of
high-level interpreted languages running on top of the JVM
and specialised for working with models. The LP-based al-
gorithm uses the GLPK linear programming solver under the
hood.

Regarding performance, the first algorithm is O(n + e),
that is, linear in the size of the model graph. The perform-
ance of the second and third algorithms can be analysed for
a decision-merge model with f levels. The parameter f
is small in practice, as it represents the number of nested
activities in a model. In the context of service composi-
tions each nested activity is typically a service composition
used as a service inside another composition. The genera-
tion of the linear program with the LP-based algorithm re-
quires O(n2 ⋅ 2f ) operations and the linear program has to
be solved with an external LP solver. An initial analysis
of the optimised graph-based algorithm reports a theoretical
upper bound ofO(n ⋅4f ) operations. When f is a small con-
stant their fixed-parameter complexity is polynomial in the
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worst-case. This is precisely the case with well-structured
models. Our experiments show good performance for reas-
onably large and complex graphs representing service com-
positions.

Concerning future work, we envision several research
lines and extensions to our proposal.

First, there are some intrinsic limitations to static meth-
ods when the dynamics of a service composition is taken
into account. This is especially true for parameter estim-
ation. That is why domain information is so valuable in
this context. This information can be obtained from differ-
ent sources: domain experts, historical data, statistical infer-
ence, machine learning (ML), etc. However, it is not always
the case that these sources are available, particularly when
the composition enters production for the first time. The
same happens at specification or design time, where these
static methods are also useful even when there is still noth-
ing to execute. Sampling profiling is another technique that
can be used to obtain precise estimates, but it requires low-
level access to the execution environment, which is not al-
ways possible. We think that the following approach could
be promising in the particular case of iteration bounds: an
initial bound is guessed beforehand, and the composition
is then monitored during its execution; if the bound is ex-
ceeded, this will trigger the execution of the algorithms to
recompute the throughput and time limits.

Second, in our opinion, a similar hybrid technique com-
bining static estimations and dynamic corrections could be
applied to other parameters too. Besides, the possibility of
implementing the algorithms in a natively compiled language
could provide the efficiency boost to enable the execution of
the algorithms computing the performance requirements on
demand. This is important for highly dynamic compositions,
where web services are hot-swapped between different pro-
viders, like in metasearch and global booking services.

Third, we are considering using ML techniques to es-
timate performance-related QoS information. There exists
an initial step in this direction [40], where the reliability of
web services is estimated by ML. As discussed previously,
there are scenarios in which this approach does not apply,
but it could prove a useful addition to our toolkit in others.

Fourth, we would also like to extend our framework so
that we can reuse execution nodes, providing a functionality
similar to call activities in BPMNmodels. For example, dif-
ferent call activities can invoke the same task, such as a web
service. We think that a promising approach would imply
a model transformation splitting paths corresponding to dif-
ferent invocations and replicating the task in each new path.
Then, the graph-based algorithm has to be modified to keep
track of these artificial replicas that, indeed, represent the
original task. By construction, the graph-based algorithm
assigns time limits to each node the first time the node is
traversed, which is always done on the strictest path. When
an execution node is assigned a time limit, this will be also
assigned to each of its replicas, once and for all. All the re-
maining steps in the algorithm have now to be aware of the
replicas and the time limits assigned to them. Of course,

some of these changes are not trivial to implement and the
impact on complexity is also to be assessed.

Fifth, as some of the parameters needed to execute the
algorithms will necessarily come from estimations, business
or domain-specific knowledge, it would be interesting to place
the whole approach in the context of the current DevOps ap-
proach, where a dashboard is used to fine-tune the algorithm
by controlling a few parameters, particularly the number of
execution replicas of each service. Let us illustrate this with
a simple example. Assume that our algorithm determines
that, in order to meet a given total time limit, it is enough
that a given service (with n replicas) finishes within a time
limit that is less strict than the times it is currently incurring.
In this case, we could reduce n, while checking average re-
sponse times, so that we can reduce the bill charged by the
provider. This saving could be used to increase the number
of execution replicas of another service that it is requiring
more time than initially thought and is therefore struggling
to meet its local time limit.

Finally, wewould like to adapt our algorithms to estimate
the amount of time needed to test systems with distributed
components whose specifications include temporal inform-
ation [41, 42, 43].

Acknowledgements
We would like to thank the anonymous reviewers of this

paper for their careful reading and useful suggestions that
have improved the quality of the paper.

This work has been supported by the Spanish Ministry
of Science and Innovation through the following projects:
FAME (RTI2018-093608-B-C31 and RTI2018-093608-B-
C33), AwESOMe (PID2021-122215NB-C31 and PID2021-
122215NB-C33), and SEBASENet (RED2018-102472-T),
which were co-funded by the European Regional Develop-
ment Fund. Partial support was also provided through the
Region of Madrid project FORTE-CM (S2018/TCS-4314),
co-funded by EIE Funds of the European Union.

References
[1] OASIS, Web Service Business Process Execution Language (WS-

BPEL) 2.0, http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.

0-OS.html, accessed on 3 May 2022 (2007).
[2] Object Management Group, Business Process Modeling Notation

2.0.2, http://www.omg.org/spec/BPMN/2.0.2, accessed on 3 May 2022
(2014).

[3] K. Falkner, C. Szabo, V. Chiprianov, G. Puddy, M. Rieckmann,
D. Fraser, C. Aston, Model-driven performance prediction of systems
of systems, Software and Systems Modeling 17 (2) (2018) 415–441.
doi:10.1007/s10270-016-0547-8.

[4] A. Strunk, QoS-aware service composition: A survey, in: 8th IEEE
European Conference onWeb Services, ECOWS’10, IEEE Computer
Society, 2010, pp. 67–74. doi:10.1109/ECOWS.2010.16.

[5] V. Hayyolalam, A. A. Pourhaji Kazem, A systematic literature review
on QoS-aware service composition and selection in cloud environ-
ment, Journal of Network and Computer Applications 110 (2018) 52–
74. doi:10.1016/j.jnca.2018.03.003.

[6] A. Sullivan, M. Z. Catur Candra, Web service recommendation sys-
tem using history and quality of service, in: 6th Int. Conf. on Data

A. García-Domínguez, F. Palomo-Lozano et al.: Preprint submitted to Elsevier Page 21 of 22

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0.2
https://doi.org/10.1007/s10270-016-0547-8
https://doi.org/10.1109/ECOWS.2010.16
https://doi.org/10.1016/j.jnca.2018.03.003


Computing performance requirements for web service compositions

and Software Engineering, ICoDSE’19, IEEE, 2019, pp. 1–6. doi:

10.1109/ICoDSE48700.2019.9092755.
[7] K. A. Botangen, J. Yu, Q. Z. Sheng, Y. Han, S. Yongchareon,

Geographic-aware collaborative filtering for web service recommend-
ation, Expert Systems with Applications 151 (2020) 113347. doi:

10.1016/j.eswa.2020.113347.
[8] V. P. Singh, M. K. Pandey, P. S. Singh, S. Karthikeyan, Neural net

time series forecasting framework for time-aware web services recom-
mendation, in: 3rd Int. Conf. on Computing and Network Communic-
ations, CoCoNet’19, Procedia Computer Science 171, Elsevier, 2020,
pp. 1313 – 1322. doi:10.1016/j.procs.2020.04.140.

[9] Eclipse Foundation, ATL – a model transformation technology,
https://www.eclipse.org/atl, accessed on 3 May 2022 (2018).

[10] Eclipse Foundation, The Epsilon Transformation Language (ETL),
https://www.eclipse.org/epsilon/doc/etl, accessed on 3 May 2022
(2022).

[11] R. Tarjan, Depth-first search and linear graph algorithms, SIAM
Journal on Computing 1 (2) (1972) 146–160. doi:10.1137/0201010.

[12] R. Fourer, D. M. Gay, B. W. Kernighan, AMPL: a modeling lan-
guage for mathematical programming, 2nd Edition, Cengage Learn-
ing, 2002.

[13] D. S. Kolovos, L. M. Rose, A. García-Domínguez, R. F.
Paige, The Epsilon Book, http://www.eclipse.org/epsilon/doc/book/
EpsilonBook.pdf, accessed on 15 March 2022 (2018).

[14] A. García-Domínguez, D. S. Kolovos, L. M. Rose, R. F. Paige,
I. Medina-Bulo, EUnit: a unit testing framework for model manage-
ment tasks, in: ACM/IEEE 14th Int. Conf. on Model Driven Engin-
eering Languages and Systems, MODELS’11, LNCS 6981, Springer,
2011, pp. 395–409. doi:10.1007/978-3-642-24485-8_29.

[15] H. Lucas, Performance evaluation and monitoring, ACM Computing
Surveys 3 (1971) 79–91. doi:10.1145/356589.356590.

[16] C. U. Smith, Introduction to software performance engineering: Ori-
gins and outstanding problems, in: M. Bernardo, J. Hillston (Eds.),
7th Int. School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM’07, Springer, 2007, pp.
395–428. doi:10.1007/978-3-540-72522-0_10.

[17] A. Avritzer, E. J. Weyuker, Deriving workloads for performance test-
ing, Software: Practice and Experience 26 (6) (1996) 613–633. doi:

10.1002/(SICI)1097-024X(199606)26:6<613::AID-SPE23>3.0.CO;2-5.
[18] M. Woodside, G. Franks, D. Petriu, The future of software perform-

ance engineering, in: Proceedings of Future of Software Engineering
2007, IEEE Computer Society, Los Alamitos, CA, USA, 2007, pp.
171–187. doi:10.1109/FOSE.2007.32.

[19] ObjectManagement Group, UMLProfile for Schedulability, Perform-
ance, and Time (SPTP) 1.1, http://www.omg.org/spec/SPTP/1.1, ac-
cessed on 3 May 2022 (2005).

[20] Object Management Group, UML Profile for Modeling and Analysis
of Real-Time and Embedded systems (MARTE) 1.2, http://www.omg.
org/spec/MARTE/1.2, accessed on 3 May 2022 (2019).

[21] R. V. Binder, B. Legeard, A. Kramer, Model-based testing: where
does it stand?, Communications of the ACM 58 (2) (2015) 52–56.
doi:10.1145/2697399.

[22] A. R. Cavalli, T. Higashino, M. Núñez, A survey on formal active and
passive testing with applications to the cloud, Annals of Telecommu-
nications 70 (3-4) (2015) 85–93. doi:10.1007/s12243-015-0457-8.

[23] A. Núñez, P. C. Cañizares, M. Núñez, R. M. Hierons, TEA-Cloud: A
formal framework for testing cloud computing systems, IEEE Trans-
actions on Reliability 70 (1) (2021) 261–284. doi:10.1109/TR.2020.

3011512.
[24] V. Cortellessa, R. Mirandola, PRIMA-UML: a performance valid-

ation incremental methodology on early UML diagrams, Science
of Computer Programming 44 (1) (2002) 101–129. doi:10.1016/

S0167-6423(02)00033-3.
[25] J. E. Neilson, C. M. Woodside, D. C. Petriu, S. Majumdar, Soft-

ware bottlenecking in client-server systems and rendezvous networks,
IEEE Transactions on Software Engineering 21 (9) (1995) 776–782.
doi:doi:10.1109/32.464543.

[26] O. Diallo, J. J. P. C. Rodrigues, M. Sene, Performances evalu-

ation and Petri nets, in: M. S. Obaidat, P. Nicopolitidis, F. Zarai
(Eds.), Modeling and Simulation of Computer Networks and Sys-
tems, Morgan Kaufmann, 2015, Ch. 11, pp. 313–355. doi:10.1016/

B978-0-12-800887-4.00011-0.
[27] J. Hillston, Stochastic Process Algebras and their Markovian se-

mantics, ACM SIGLOG News 5 (2) (2018) 20–35. doi:10.1145/

3212019.3212023.
[28] G. Garbi, E. Incerto, M. Tribastone, Learning queuing networks by

recurrent neural networks, in: 11th ACM/SPEC International Confer-
ence on Performance Engineering, ICPE’20, ACM Press, 2020, pp.
56–66. doi:10.1145/3358960.3379134.

[29] O. Reynolds, A. García-Domínguez, N. Bencomo, Towards auto-
mated provenance collection for runtime models to record system his-
tory, in: 12th System Analysis and Modelling Conference, SAM’20,
ACM Press, 2020, pp. 12–21. doi:10.1145/3419804.3420262.

[30] J. S. Cardoso, A. Sheth, J. Miller, J. Arnold, K. Kochut, Quality of
service for workflows and web service processes, Journal of Web Se-
mantics 1 (3) (2004) 281–308. doi:10.1016/j.websem.2004.03.001.

[31] S. Bernardi, J. Merseguer, D. C. Petriu, A dependability profile within
MARTE, Software & SystemsModeling 10 (3) (2011) 313–336. doi:
10.1007/s10270-009-0128-1.

[32] M. Alhaj, D. C. Petriu, Approach for generating performance mod-
els from UML models of SOA systems, in: 20th Conf. of the Center
for Advanced Studies on Collaborative Research, CASCON’10, ACM
Press, 2010, pp. 268–282. doi:10.1145/1923947.1923975.

[33] F. Palomo-Lozano, A. Estero-Botaro, I.Medina-Bulo, M. Núñez, Test
suite minimization for mutation testing of WS-BPEL compositions,
in: 20th Annual Conf. on Genetic and Evolutionary Computation,
GECCO’18, ACMPress, 2018, pp. 1427–1434. doi:10.1145/3205455.
3205533.

[34] D. Ardagna, B. Pernici, Adaptive service composition in flexible pro-
cesses, IEEE Transactions on Software Engineering 33 (6) (2007)
369–384. doi:10.1109/TSE.2007.1011.

[35] Y.-J. Seo, H.-Y. Jeong, Y.-J. Song, Best web service selection based
on the decision making between qos criteria of service, in: L. T. Yang,
X. Zhou, W. Zhao, Z. Wu, Y. Zhu, M. Lin (Eds.), Embedded Software
and Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005,
pp. 408–419. doi:10.1007/11599555_39.

[36] W. Viriyasitavat, Z. Bi, Service selection and workflow composition
inmodern business processes, Journal of Industrial Information Integ-
ration 17 (2020) 100126. doi:https://doi.org/10.1016/j.jii.2020.

100126.
[37] Y. Gao, J. Na, B. Zhang, L. Yang, Q. Gong, Optimal web services

selection using dynamic programming, in: Proceedings of the 11th
IEEE Symposium on Computers and Communications, ISCC’06,
IEEE, 2006, pp. 365–370. doi:10.1109/ISCC.2006.116.

[38] T. Yu, Y. Zhang, K.-J. Lin, Efficient algorithms for web services se-
lection with end-to-end QoS constraints, ACM Transactions on the
Web 1 (1) (2007) article 6. doi:10.1145/1232722.1232728.

[39] C.-F. Lin, R.-K. Sheu, Y.-S. Chang, S.-M. Yuan, A relaxable ser-
vice selection algorithm for QoS-based web service composition, In-
formation & Software Technology 53 (12) (2011) 1370–1381. doi:

10.1016/j.infsof.2011.06.010.
[40] Y. Song, Web service reliability prediction based on machine learn-

ing, Computer Standards & Interfaces 73 (2021) 103466. doi:https:
//doi.org/10.1016/j.csi.2020.103466.

[41] M. G. Merayo, R. M. Hierons, M. Núñez, Passive testing with asyn-
chronous communications and timestamps, Distributed Computing
31 (5) (2018) 327–342. doi:10.1007/s00446-017-0308-0.

[42] R. Lefticaru, R. M. Hierons, M. Núñez, Implementation relations and
testing for cyclic systems with refusals and discrete time, Journal of
Systems and Software 170 (2020) 110738. doi:10.1016/j.jss.2020.

110738.
[43] G. Ortiz, J. Boubeta-Puig, J. Criado, D. Corral-Plaza, A. G. de Prado,

I. Medina-Bulo, L. Iribarne, A microservice architecture for real-time
IoT data processing: A reusable web of things approach for smart
ports, Computer Standards & Interfaces 81 (2022) 103604. doi:10.

1016/j.csi.2021.103604.

A. García-Domínguez, F. Palomo-Lozano et al.: Preprint submitted to Elsevier Page 22 of 22

https://doi.org/10.1109/ICoDSE48700.2019.9092755
https://doi.org/10.1109/ICoDSE48700.2019.9092755
https://doi.org/10.1016/j.eswa.2020.113347
https://doi.org/10.1016/j.eswa.2020.113347
https://doi.org/10.1016/j.procs.2020.04.140
https://www.eclipse.org/atl
https://www.eclipse.org/epsilon/doc/etl
https://doi.org/10.1137/0201010
http://www.eclipse.org/epsilon/doc/book/EpsilonBook.pdf
http://www.eclipse.org/epsilon/doc/book/EpsilonBook.pdf
https://doi.org/10.1007/978-3-642-24485-8_29
https://doi.org/10.1145/356589.356590
https://doi.org/10.1007/978-3-540-72522-0_10
https://doi.org/10.1002/(SICI)1097-024X(199606)26:6<613::AID-SPE23>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1097-024X(199606)26:6<613::AID-SPE23>3.0.CO;2-5
https://doi.org/10.1109/FOSE.2007.32
http://www.omg.org/spec/SPTP/1.1
http://www.omg.org/spec/MARTE/1.2
http://www.omg.org/spec/MARTE/1.2
https://doi.org/10.1145/2697399
https://doi.org/10.1007/s12243-015-0457-8
https://doi.org/10.1109/TR.2020.3011512
https://doi.org/10.1109/TR.2020.3011512
https://doi.org/10.1016/S0167-6423(02)00033-3
https://doi.org/10.1016/S0167-6423(02)00033-3
https://doi.org/doi:10.1109/32.464543
https://doi.org/10.1016/B978-0-12-800887-4.00011-0
https://doi.org/10.1016/B978-0-12-800887-4.00011-0
https://doi.org/10.1145/3212019.3212023
https://doi.org/10.1145/3212019.3212023
https://doi.org/10.1145/3358960.3379134
https://doi.org/10.1145/3419804.3420262
https://doi.org/10.1016/j.websem.2004.03.001
https://doi.org/10.1007/s10270-009-0128-1
https://doi.org/10.1007/s10270-009-0128-1
https://doi.org/10.1145/1923947.1923975
https://doi.org/10.1145/3205455.3205533
https://doi.org/10.1145/3205455.3205533
https://doi.org/10.1109/TSE.2007.1011
https://doi.org/10.1007/11599555_39
https://doi.org/https://doi.org/10.1016/j.jii.2020.100126
https://doi.org/https://doi.org/10.1016/j.jii.2020.100126
https://doi.org/10.1109/ISCC.2006.116
https://doi.org/10.1145/1232722.1232728
https://doi.org/10.1016/j.infsof.2011.06.010
https://doi.org/10.1016/j.infsof.2011.06.010
https://doi.org/https://doi.org/10.1016/j.csi.2020.103466
https://doi.org/https://doi.org/10.1016/j.csi.2020.103466
https://doi.org/10.1007/s00446-017-0308-0
https://doi.org/10.1016/j.jss.2020.110738
https://doi.org/10.1016/j.jss.2020.110738
https://doi.org/10.1016/j.csi.2021.103604
https://doi.org/10.1016/j.csi.2021.103604

