
Squeeziness for Non-Deterministic Systems✩

Alfredo Ibiasa, Manuel Núñezb
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Abstract

Context: Failed Error Propagation greatly reduces the effectiveness of Software Testing by masking faults present in
the code. This situation happens when the System Under Test executes a faulty statement, the state of the system is
affected by this fault, but the expected output is observed. Therefore, it is a must to assess its impact in the testing
process. Squeeziness has been shown to be a useful measure to assess the likelihood of fault masking in deterministic
systems.
Objective: The main goal of this paper is to define a new Squeeziness notion that can be used in a scenario where
we may have non-deterministic behaviours. The new notion should be a conservative extension of the previous one.
In addition, it would be necessary to evaluate whether the new notion appropriately estimates the likelihood that a
component of a system introduces Failed Error Propagation.
Method: We defined our black-box scenario where non-deterministic behaviours might appear. Next, we presented a
new Squeeziness notion that can be used in this scenario. Finally, we carried out different experiments to evaluate the
usefulness of our proposal as an approapriate estimation of the likelihood of Failed Error Propagation.
Results: We found a high correlation between our new Squeeziness notion and the likelihood of Failed Error Propagation
in non-deterministic systems. We also found that the extra computation time with respect to the deterministic version
of Squeeziness was negligible.
Conclusion: Our new Squeeziness notion is a good measure to estimate the likelihood of Failed Error Propagation being
introduced by a component of a system (potentially) showing non-deterministic behaviours. Since it is a conservative
extension of the original notion and the extra computation time needed to compute it, with respect to the time needed
to compute the former notion, is very small, we conclude that the new notion can be safely used to assess the likelihood
of fault masking in deterministic systems.
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1. Introduction

Failed Error Propagation (FEP) [1] strongly diminishes
the effectiveness of Software Testing [2, 3]. In terms of the
RIPR model [4], FEP happens if a fault is reached, infecting
the internal state of the system so that it includes some
erroneous values, but the error is either not propagated
outside the system or, even if it is propagated, it is not
revealed to an external observer. It may be thought that

✩This research has been supported by the European Union’s Ho-
rizon 2020 research and innovation programme under grant agree-
ment Sano No 857533; the Sano project carried out within the Inter-
national Research Agendas programme of the Foundation for Polish
Science, co-financed by the European Union under the European Re-
gional Development Fund; the State Research Agency (AEI) of the
Spanish Ministry of Science and Innovation under grant PID2021-
122215NB-C31 (AwESOMe); and the Region of Madrid under grant
S2018/TCS-4314 (FORTE-CM) co-funded by EIE Funds of the
European Union.

Email addresses: a.ibias@sanoscience.org (Alfredo Ibias),
mn@sip.ucm.es (Manuel Núñez)
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faults causing FEP are harmless because they do not have
any effect outside the scope where they are located. This
false confidence is very dangerous because a slight change
in the environment can cause an unforeseen propagation
of the error. For example, we may have a system including
a faulty component but such that the fault is not revealed
due to the current connections between the components.
However, if we plug this apparently correct but faulty com-
ponent in another system, then we can have a failure of
the whole system.

FEP has been widely addressed in the literature. Sev-
eral studies have found that it really hampers the testing
process [5, 6]: in 13% of the examined programs, a total of
60% or more of the tests suffered from FEP [7]. The main
problem with FEP is that it is very difficult to detect. Still,
we can try to assess the likelihood of FEP by devising meas-
ures that could estimate which parts of a system are more
likely to suffer from FEP. In this line, Information Theory
concepts were used to indirectly estimate FEP, giving raise
to the concept of Squeeziness [8]. This concept, however,
was limited to deterministic systems. The effectiveness of
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Squeeziness was shown in an empirical study [9] where 30
programs and more than 7 · 106 tests were used to show
that Spearman rank correlation of Squeeziness with FEP is
close to 0.95. Subsequent work studied extensions of the
Squeeziness notion to new scenarios. In particular, Squee-
ziness has been adapted to work in a black-box testing
framework [10]. Also, the original notion has been slightly
modified, introducing Normalised Squeeziness [11], with
the goal of comparing Squeeziness of different programs
with different input and output sets sizes. The classical
notion of Squeeziness is based on Shannon’s entropy [12],
but there is also work extending it to use other definitions
of entropy. Specifically, Rényi’s entropy [13] was used to
extend Squeeziness by proposing the concept of Rényi’s
Squeeziness [14]. In addition, a tool supports the choice
of a good parameter to instantiate Rényi’s entropy in an
automatic way [15]. There is also recent work extending
Squeeziness to develop fine grain versions [16] but, again,
it is only suited for white-box scenarios. To the best of our
knowledge, Failed Error Propagation has not been studied
in the context of systems presenting non-deterministic be-
haviours. In particular, a notion based on Squeeziness has
not been used in non-deterministic systems as an indic-
ator of Failed Error Propagation. Since Squeeziness can
be used to assess the likelihood of having cases of FEP in
a System Under Test (SUT), testers may have a reference
on how easy/hard will be to test this SUT. This is import-
ant when planing a testing process, as SUTs with higher
Squeeziness will need more effort devoted to testing.

The main limitation of Squeeziness is that it is intrins-
ically associated with deterministic systems. Although
this is a reasonable assumption if we consider testing an
isolated component, more complex systems usually present
some kind of non-determinism. For example, we may con-
form a system as the composition of a set of communicat-
ing components. Even if all the components were determ-
inistic, an external observer might see non-deterministic
behaviours. If we are testing in a black-box framework,
then we can only apply inputs and observe outputs, without
having access to neither the structure nor the internal com-
munications between components. This framework is illus-
trated in Figure 1 and it is the one that we consider in this
paper. We have a single component C ′ (right hand side)
and this component receives a sequence of values from an-
other component C (left hand side, C can be the compos-
ition of several sub-components). Note that this sequence
plays a double role: it is an input sequence received by C ′

and an output sequence produced by C. Since we consider
a black-box framework, the tester cannot observe this se-
quence: the tester provides (input) sequences to the whole
system and observes (output) sequences. FEP happens if
C provides an unexpected sequence but C ′ produces the
same output sequence for both the expected and unexpec-
ted sequences. It is important to remark that, due to this
black-box framework, the components cannot be separated
and tested in isolation. In order to represent our systems,
we use the well-known, and widely used in model-based

Figure 1: System with non-deterministic behaviour

testing, Finite State Machine (FSM) formalism. However,
we can easily adapt our framework to deal with other state-
based formalisms as long as they provide a mechanism to
apply inputs and observe outputs.

Squeeziness is defined as the difference between the en-
tropies of inputs and outputs. In a deterministic system, if
all the inputs produce different outputs then Squeeziness
is equal to 0 and we know that we are free of FEP. In fact,
as we will discuss later, FEP can come only from collisions
of different inputs producing the same output. However,
non-deterministic behaviours do not fit this simple pattern
because we also need to take into account that the same
input can produce different outputs. It is important to
emphasise that this new characteristic must be carefully
included in the new definition of Squeeziness: the diffu-
sion generated by an input being able to produce different
outputs should increase the value of the new measure.

Since we are considering a black-box framework and
Squeeziness strongly depends on the inputs and outputs
that the SUT may produce, we need to provide a method
to compute them. If we have a specification of the sys-
tem, as it is usually the case in the context of formal test-
ing [17, 18], and we assume the competent programmer
hypothesis [19] then we may consider that the SUT will be
very similar to the specification. Therefore, if we use as
input and output sets the ones provided by the specifica-
tion we will have a very accurate description of the ones
conforming the SUT. If we do not have a specification, then
we might collect sequences during testing, applying inputs
and observing outputs, and “infer” these sets according to
the obtained sequences. Note that if a certain test suite
is not covering a part of the SUT, then we cannot have in-
formation about the sequences produced when traversing
that part of the system. This would not be a drawback of
our approach but of the test suite itself.

Once we were able to produce a satisfactory defini-
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tion of the new notion, having the expected properties, we
had to evaluate whether it correlated with the likelihood
of FEP. We performed two groups of experiments. First,
we created simulations of systems by generating inputs
and their corresponding outputs (we do not use the in-
ternal structure of the system). These experiments aimed
to assess the suitability of our approach and its scalabil-
ity. The results were very satisfactory because correlations
were higher than 0.7 in more that 96% of the subjects and
higher than 0.9 in more than 88% of the subjects. Second,
we evaluated correlation in FSMs, extracted from a well-
known benchmark, with the goal of assessing the perform-
ance of our approach over FSMs. Since these FSMs were
deterministic, we followed a methodology used in recent
work [20] to produce non-deterministic versions of them.
In this case, we got correlations higher than 0.9 in most
of the cases, with only one case under that mark (but still
over 0.5).

The rest of the paper is structured as follows. In Sec-
tion 2 we present the theoretical background needed to
define non-deterministic Squeeziness, while its formal defin-
ition is given in Section 3. In Section 4 we present our re-
search questions and the experiments that we performed
to answer them. In Section 5 we discuss some of the de-
cisions underlying the definition and evaluation of non-
deterministic Squeeziness. Section 6 analyses the threats
to the validity of our results. Finally, in Section 7 we
present our conclusions and some lines for future work.

2. Theoretical Background

In this section we review concepts that we will use dur-
ing the rest of the paper. Finite State Machines (FSMs)
will be used to define our experimental subjects. The de-
terministic version of Squeeziness will be the base to define
its non-deterministic counterpart. The probability of colli-
sions measures the likelihood of Failed Error Propagation
(FEP) due to colliding outputs. Note that colliding out-
puts are the only potential source of FEP in deterministic
systems. In addition, we will introduce the probability of
diffusion to measure the likelihood of having FEP due to
diffused inputs. Finally, we will explain how we are going
to estimate the likelihood of FEP in a non-deterministic
system.

2.1. Finite State Machines

Finite State Machines have been widely used in formal
approaches to testing [21]. Here we present some concepts
taken from classical work. Although these concepts are
based on original sources, some notation is adapted to fa-
cilitate the formulation of subsequent definitions.

Given a finite set A, A∗ denotes the set of finite se-
quences of elements of A; A+ denotes the set of non-empty
finite sequences of elements of A; and ϵ ∈ A∗ denotes the
empty sequence. We let |A| denote the size of A. Given a
sequence τ ∈ A∗, |τ | denotes its length. Given a sequence

τ ∈ A∗ and a ∈ A, we have that τa denotes the sequence
τ followed by a and aτ denotes the sequence τ preceded
by a.

An FSM is a finite labelled transition system in which
each transition has a label in the form of an input/output
pair.

Definition 1. A Finite State Machine (FSM) is represen-
ted by a tuple M = (Q, qin, I, O, T ) in which Q is a finite
set of states, qin ∈ Q is the initial state, I is a finite
set of input actions, O is a finite set of output actions,
and T ⊆ Q × (I × O) × Q is the transition relation. The
meaning of a transition (q, (i, o), q′) ∈ T , also denoted by
(q, i/o, q′), is that if M receives the input action i when in
state q then it can move to state q′ and produce the output
action o.

We say that M is deterministic if for all q ∈ Q and
i ∈ I there exists at most one pair (q′, o) ∈ Q × O such
that (q, i/o, q′) ∈ T ; otherwise, we say that M is non-
deterministic. We say that M is observable if for each
q ∈ Q and i ∈ I there do not exist o ∈ O and different
q′, q′′ ∈ Q such that (q, i/o, q′), (q, i/o, q′′) ∈ T . We say
that M is complete if for each q ∈ Q and i ∈ I there exist
o ∈ O and q′ ∈ Q such that (q, i/o, q′) ∈ T .

We assume that FSMs can be non-deterministic. Obvi-
ously, deterministic FSMs are a subset of non-deterministic
ones. We restrict our attention to observable FSMs since
it is easy to transform any non-deterministic FSM into an
equivalent observable, probably non-deterministic, FSM. We
allow partial FSMs, that is, we do not force that our sys-
tems are able to accept all the inputs in all their states. By
allowing partial and non-deterministic FSMs, we are able to
deal with a big variety of systems that are usually omitted
in approaches to testing from FSMs. In addition, this in-
creases the applicability of the devised measure as a tool
to assess the likelihood of systems having FEP.

A process can be identified with its initial state and
we can define a process corresponding to a state q of M
by making q the initial state. Thus, we use states and
processes and their notation interchangeably. In our work
we also assume the minimal test hypothesis [22]: the SUT

can be modelled as an (unknown) object described in the
same formalism as the specification (here, an FSM). It is
important to remark that we are in a black-box frame-
work. Therefore, we can only assume the existence of such
an FSM, but we might not have access to its description.
Furthermore, we can weaken this assumption to only con-
sider that for each input sequence applied to the SUT it
will return an output sequence of the same size. If the
SUT cannot process the applied input sequence, then we
assume that an error is produced. We depict FSMs as dia-
grams in which nodes represent the states of the FSM, arcs
represent transitions between states, and the initial state
is denoted by an incoming edge with no source.

In our setting, we distinguish between input actions
and inputs of the system: an input action is a single ele-
ment of I while an input of the system will be an element
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of I+, that is, a non-empty sequence of input actions (sim-
ilarly for outputs and output actions). In order to compute
Squeeziness, we need to obtain the inputs and outputs of
the FSM and we do this by using the concept of trace.

Definition 2. Let M = (Q, qin, I, O, T ) be an FSM. We
use the following notation.

1. Let τ = (i1, o1) . . . (ik, ok) ∈ (I × O)∗ be a sequence
of input/output actions and q be a state. We say
that M can perform τ from q if there exist states
q1 . . . qk ∈ Q such that for all 1 ≤ j ≤ k we have
(qj−1, ij/oj , qj) ∈ T , where q0 = q. We denote this

by either q
τ

==⇒ qk or q
τ

==⇒ . If q = qin then we say
that τ is a trace of M . We denote by traces(M)
the set of traces of M . Note that for every state q we
have that q

ϵ
==⇒ q holds. Therefore, ϵ ∈ traces(M)

for every FSM M .

2. Let α = i1 . . . ik ∈ I∗ be a sequence of input actions
and q be a state. We define outM (q)α as the set

{o1 . . . ok ∈ O∗|q
(i1,o1)...(ik,ok)

==========⇒}

Note that if M is deterministic then this set is either
empty or a singleton.

3. Let q ∈ Q be a state. We define domM (q) as the set

{α ∈ I∗|outM (q)α ̸= ∅}

If q = qin then we simply write domM . Similarly, we
define imageM (q) as the set

{o1 . . . ok ∈ O∗|∃i1 . . . ik ∈ I∗ : q
(i1,o1)...(ik,ok)

==========⇒}

If q = qin then we simply write imageM . We denote
by domM,k the set domM ∩ Ik. Similarly, we denote
by imageM,k the set imageM ∩Ok.

4. We define fM : domM −→ P(imageM ) as the func-
tion such that for all α ∈ domM we have fM (α) =
{β ∈ O∗|β ∈ outM (qin)α}. Note that if M is de-
terministic then this set is a singleton and we could
define fM : domM −→ imageM .

5. Let k > 0. We define fM,k as the function fM ∩
(Ik × Ok), where fM denotes the associated set of
pairs. Let β ∈ imageM . We define f−1

M (β) as {α ∈
I∗|β ∈ fM (α)}.

Note that if M is a partial FSM, then we have that
domM ⊂ I∗; if M is complete, then domM = I∗.

2.2. Squeeziness for deterministic systems

In previous work [8, 9, 10, 11, 14], Squeeziness was pro-
posed to assess the likelihood of FEP in deterministic sys-
tems. Squeeziness is an information theoretic concept that
measures the loss of information in a system. In our case,
this loss is given by the difference between the informa-
tion comprised in the set of inputs and the one comprised

in the set of outputs. In order to measure the amount of
information in a set, we use the classical concept of en-
tropy [12]. Therefore, Squeeziness was formally defined as
the difference between two entropies.

Definition 3. Let A be a finite set and ξA be a random
variable over A. We denote by σξA the probability distri-
bution induced by ξA. The entropy of the random variable
ξA, denoted by H(ξA), is defined as:

H(ξA) = −
∑
a∈A

σξA(a) · log2(σξA(a))

Let f : A −→ B be a total function and consider two
random variables ξA and ξB ranging, respectively, over A
and B. The Squeeziness of f , denoted by Sq(f), is defined
as the loss of information after applying f to A, that is,
H(ξA)−H(ξB).

Squeeziness measures the amount of information lost
between the sets A and B through the function f . As
explained in our previous work [10], FSMs can be seen as
functions that transform sequences of input actions into se-
quences of output actions. To properly transform an FSM

into a function between two random variables, the only re-
quisite we are missing is to represent the input and output
sets of the FSM as random variables. This is easily achieved
by assigning a probability distribution to each set. Spe-
cifically, we assign a probability distribution to the sets
of input sequences and of output sequences of a specific
length k. As explained in our previous work [10], we took
this decision because it gives us an incremental procedure
to compute a sequence of consecutive values of Squeeziness
so that we can analyse how the series is evolving. Actually,
the input sequence length used will depend on the amount
of testing to be carried out since this will determine the
lengths of the input sequences that a component is likely
to receive. Note also that there is potential to use Squeezi-
ness values, for different input sequence lengths, to choose
test cases. We can use these values with the aim of using
test cases that minimise the likelihood of FEP, that is, this
approach provides a way to know, for a given length, whe-
ther the probability of having FEP, once we have tested all
the possible inputs with the given length, will be greater
than 0.

In order to apply Squeeziness to deterministic FSMs we
define two random variables, ξdomM,k

and ξimageM,k
, ranging

respectively over domM,k and imageM,k.

Definition 4. Let M = (Q, qin, I, O, T ) be a determin-
istic FSM and k > 0. Let us consider two random variables
ξdomM,k

and ξimageM,k
ranging, respectively, over the domain

and image of fM,k. The Squeeziness of M at length k is
defined as

Sqk(M) = H(ξdomM,k
)−H(ξimageM,k

)

In a certain sense, the notion of Squeeziness encodes
the distribution over input sequences of length k producing
the same output sequence.
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Figure 2: A case of fault masking

2.3. Probability of Collisions

The probability of collisions was used in the original
definition of Squeeziness [8, 9] to assess FEP. The idea is
that each input leading to the same output generates a col-
lision. This collision induces a certain probability of mask-
ing a fault because it can lead the system to a state that
produces the same output. The original notion assumes a
uniform probability over the set of input sequences of the
FSM. In this case, the probability of collisions (PColl) can
be defined as follows.

Definition 5. Let M be an FSM and k > 0. Let imageM,k =

{β1, ..., βn} and for all 1 ≤ i ≤ n let Ii = f−1
M,k(βi) and

mi = |f−1
M,k(βi)|. We have that d =

∑n
i=1 mi is the size of

the input space.
Given a uniform distribution over the inputs, the prob-

ability of α and α′ both being in the set Ii is equal to

pi = mi·(mi−1)
d·(d−1) . We have that the probability of having

a collision in M for sequences of length k, denoted by
PCollk(M), is given by

PCollk(M) =

n∑
i=1

pi

2.4. Probability of Diffusion

Next we introduce a new concept that naturally ap-
pears if we are going to assess FEP in non-deterministic
systems. The probability of diffusion is somehow sim-
ilar to PColl but it only happens in the presence of non-
determinism: generating two or more outputs from the
same input diffuses the input to multiple different out-
puts. Therefore, diffusion induces a certain probability of
masking a fault if we reach a state of the system producing
one of the different outputs that can be generated by the
input. An example of this can be found in Figure 2, where
no test can reveal that the second system has a fault be-
cause for the same input sequence x1x1 the first FSM can

obtain both z1z1 and z2z2, while in the faulty version (the
second FSM) we always obtain the second output, that we
consider a valid one. However, the internal state between
both components has not been a valid internal state, be-
cause in the first FSM we cannot have an internal state
producing y3y3 but this is possible in the second FSM, as
shown in Figure 2.

If we assume again, as the original definition did with
PColl, a uniform probability over the set of output se-
quences of the FSM, the probability of diffusion (PDiff) is
defined as follows.

Definition 6. Let M be an FSM and k > 0. Let domM,k =
{α1, ..., αn} and for all 1 ≤ i ≤ n let Oi = fM,k(αi) and
m′

i = |fM,k(αi)|. We have that d′ =
∑n

i=1 m
′
i is the size

of the output space.
Given a uniform distribution over the outputs, the prob-

ability of β and β′ both being in the set Oi is equal to

p′i =
m′

i·(m
′
i−1)

d′·(d′−1) , that is, the probability of both outputs be-

ing in the output space of the input given the output space
of the whole function. Thus, we have that the probability of
having a diffusion in M for sequences of length k, denoted
by PDiffk(M), is given by

PDiffk(M) =

n∑
i=1

p′i

The analogy between PColl and PDiff can be seen in
their formal definitions: PColl relies on the inverse image
of outputs (expressed by setting mi = |f−1

M,k(βi)|) while
PDiff relies on the size of the image of inputs (expressed by
setting m′

i = |fM,k(αi)|). Note that in the deterministic
case we have that m′

i is always equal to 1 because αi ∈
domM,k.

2.5. Estimating Failed Error Propagation

In previous work, FEP was estimated by using PColl.
This estimation was based on the properties of determ-
inistic systems: the only possible source of fault masking
would be the collision of multiple inputs to the same out-
put. In the non-deterministic case we still have this source
of fault masking, but it is not the only one. We also have
fault masking produced by the diffusion of the same in-
put to multiple outputs. We estimate this fault masking
through the PDiff measure. Then, in order to estimate
the Failed Error Propagation of a non-deterministic sys-
tem we will use the sum of both phenomena, that is, we
will consider PColl+PDiff.

3. Non-Deterministic Squeeziness

In this section we extend Squeeziness to deal with non-
deterministic systems. In order to address this task we
need to consider two factors: the inclusion of a new source
of FEP (given by non-deterministic transitions) and the
limitation of the original notion to consider only one source
of FEP.
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Non-determinism hinders the testing process because
the SUT can return different outputs after different applica-
tions of the same input. This could produce that a specific
erroneous behaviour is not observed due to the fault being
masked by the non-determinism of the system. Therefore,
even if we apply an input reaching the fault, it may hap-
pen that posterior non-determinism leads the component
through a path such that the returned output does not
reveal the fault.

The second factor complicates things more than expec-
ted. Squeeziness was introduced to consider fault masking
produced by the collision of several inputs to the same out-
put. Thus, it could be thought that it could deal with the
source of FEP produced by the non-determinism. How-
ever, the original formulation of Squeeziness is suited to
deterministic systems and, therefore, we need to derive
again the formula from its high level definition. We start
with Definition 4. Using the following result [10]

H(ξimageM,k
) +H(ξdomM,k

|ξimageM,k
)

∥
H(ξdomM,k

) +H(ξimageM,k
|ξdomM,k

)

(1)

we can rewrite Squeeziness as

Sqk(M) = H(ξdomM,k
|ξimageM,k

)−H(ξimageM,k
|ξdomM,k

)

and using some auxiliary results [10] and the fact that

σξimageM,k
(β) =

∑
α∈f−1

M (β)

σξdomM,k
(α)

we can finally rewrite Squeeziness as

Sqk(M) = −
∑

β∈imageM,k

 ∑
α∈f−1

M (β)

σξdomM,k
(α)

·RM (β)+SM (2)

where the term RM (β) is equal to

∑
α∈f−1

M (β)

σξdomM,k
(α)

σξdomM,k
(f−1

M (β))
· log2

(
σξdomM,k

(α)

σξdomM,k
(f−1

M (β))

)
(3)

and the term SM is given in Figure 3. The full derivation
of this formula can be found in Appendix A.

In our previous work [10], we provided the following
equivalent formulation of Squeeziness

Sqk(M) = −
∑

β∈imageM,k

 ∑
α∈f−1

M (β)

σξdomM,k
(α)

 · RM (β)

because SM is equal to 0 if the FSM is deterministic. How-
ever, this formulation is no longer valid if we are in a non-
deterministic scenario because, in general, SM ̸= 0. Then,
it is necessary to start from Equation 2.

In that equation, the term SM accounts for the incre-
ment of information introduced by non-determinism, re-
ducing the total loss of information of the FSM. This term
will be relevant on the development of non-deterministic
Squeeziness.

The previous formulation allows us to measure the loss
of information produced by the FSM. However, as explained
before, in this scenario the loss of information is not the
only source of FEP. The effect of non-determinism is that
an increase in information generates FEP as well. There-
fore, we also need to measure the increment of information
produced by the FSM and the more natural way to do it is
by using the new notion of Alternative Squeeziness.

Definition 7. Let M = (Q, qin, I, O, T ) be an FSM and
k > 0. Let us consider two random variables ξdomM,k

and
ξimageM,k

ranging, respectively, over the domain and image
of fM,k. The Alternative Squeeziness of M at length k is
defined as

AlSqk(M) = H(ξimageM,k
)−H(ξdomM,k

)

The following result, where we provide an alternative
formulation of Alternative Squeeziness, is a straightfor-
ward consequence of the previous definition by using the
following fact:

σξdomM,k
(α) =

∑
β∈fM (α)

σξimageM,k
(β)

Corollary 1. Let M = (Q, qin, I, O, T ) be an FSM and k >
0. Let us consider a random variable ξimageM,k

ranging over
the image of fM,k. We have that

AlSqk(M) = −
∑

α∈domM,k

 ∑
β∈fM (α)

σξimageM,k
(β)

 · R′
M (α) + S ′

M

where the term R′
M (α) is equal to

∑
β∈fM (α)

σξimageM,k
(β)

σξimageM,k
(fM (α))

· log2

(
σξimageM,k

(β)

σξimageM,k
(fM (α))

)
(4)

and the term S ′
M is given in Figure 3.

The proof of the previous result can be found in Ap-
pendix B. In this formulation, similarly to what happened
with the formula of Squeeziness, the term S ′

M accounts for
the decrease on information produced by the collision of
multiple inputs to the same output, reducing the total gain
of information of the FSM. This factor is equal to 0 when
there is no possible loss of information, that is, when each
output is produced by only one input. This term will also
be relevant when defining the non-deterministic extension
of Squeeziness.

It is easy to see that Squeeziness and Alternative Squee-
ziness have the same absolute value but with different sign.
Obviously, given an FSM M and a length k, if we add those
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SM =
∑

α∈domM,k

σξdomM,k
(α) ·

∑
β∈fM (α)

∑
α∈f−1

M (β)

σξdomM,k
(α)

∑
β∈fM (α)

∑
α∈f−1

M (β)

σξdomM,k
(α)

· log2


∑

α∈f−1
M (β)

σξdomM,k
(α)

∑
β∈fM (α)

∑
α∈f−1

M (β)

σξdomM,k
(α)



S ′
M =

∑
β∈imageM,k

σξimageM,k
(β) ·

∑
α∈f−1

M (β)

∑
β∈fM (α)

σξimageM,k
(β)

∑
α∈f−1

M (β)

∑
β∈fM (α)

σξimageM,k
(β)

· log2


∑

β∈fM (α)

σξimageM,k
(β)

∑
α∈f−1

M (β)

∑
β∈fM (α)

σξimageM,k
(β)


Figure 3: Definition of SM (top) and S′

M (bottom)

values as an attempt to estimate the total amount of FEP
in M for a given length k, we would obtain 0. However,
if we analyse the formulas, we can conclude that the cor-
rection factors (SM and S′

M ) are diminishing the effect of
the source of FEP we are evaluating. Therefore, the ori-
ginal formulas are not a viable solution to compute the
likelihood of FEP.

In fact, we do not need to evaluate whether the FSM

loses or creates information in absolute terms. Instead, we
need to know how much information can be potentially
lost or gained. Specifically, we would like to obtain the
maximum information that the FSM can lose, so that we
can account for the possible produced collisions, and the
maximum information that the FSM can generate, so that
we can also account for the possible produced diffusion.
Thus, the solution we propose is to remove the correction
factors SM and S ′

M from the formulas. This way, we can
consider the maximum possible effect of both sources of
FEP. We further discuss this decision in Section 5.

Taking into account the previous considerations, we
finally formulate Non-Deterministic Squeeziness as follows.

Definition 8. Let M = (Q, qin, I, O, T ) be an FSM and
k > 0. Let us consider two random variables ξdomM,k

and
ξimageM,k

ranging , respectively, over the domain and image
of fM,k. We have that

NDSqk(M) =−
∑

β∈imageM,k

 ∑
α∈f−1

M (β)

σξdomM,k
(α)

 · RM (β)

−
∑

α∈domM,k

 ∑
β∈fM (α)

σξimageM,k
(β)

 · R′
M (α)

where the terms RM (β) and R′
M (α) are given in Equa-

tions 3 and 4, respectively.

In the next section we will evaluate the usefulness of
Non-Deterministic Squeeziness to assess the likelihood of
FEP in non-deterministic systems. First, we have to con-
sider the probability distributions that we assign to the
random variables associated with the domain and the im-
age of the FSM. If we knew the true probability distribution,

then such distribution would be the ideal one. However,
in most situations, we do not even have a hint on the dis-
tribution and it is necessary to make an assumption. This
was also the case in previous work dealing with (determ-
inistic) Squeeziness. However, unlike in previous work, we
need to define not only a distribution for the inputs, but
also one for the outputs of the FSM.

This situation raises another concern: should we define
one distribution and bound the other one to this first one,
or should we consider the same distribution for both sets,
independently of the relations that the FSM could gener-
ate? The first case would be something to consider, as the
distribution over the outputs is influenced by the distribu-
tion over the inputs and the mapping of inputs to outputs.
However, after some preliminary experiments, we have
chosen the second approach because the first one showed
substantially worse empirical results. We think that this
situation happens because we do not know the real distri-
butions either for inputs or outputs, although further work
would be needed to show more evidence. Also, it is im-
portant to remark that in a black-box situation we would
not be able to derive the outputs distribution from the in-
puts one. In order to make the assumption of probability
distributions, and following previous work on Squeeziness,
we analyse two approaches.

3.1. Maximum Entropy Principle

In this approach we choose a distribution that maxim-
ises the entropy. In our setting, this distribution is the uni-
form distribution [23]. Under this assumption, the weight
of a single element of σξdomM,k

would be 1
|domM,k| and of

σξimageM,k
would be 1

|imageM,k|
. Thus, the weight of the in-

verse image of an output β ∈ imageM,k would be equal to
|f−1

M (β)|
|domM,k| and the weight of the image of an input α ∈ domM,k

would be equal to |fM (α)|
|imageM,k|

.

After applying these definitions, the formula of Non-
Deterministic Squeeziness can be found in Figure 4 (top).
Let us mention that we will use this formula in our ex-
periments because we this principle is also followed by the
definitions of PColl and PDiff.
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NDSqk(M) =−
∑

β∈imageM,k

 ∑
α∈f−1

M (β)

1

|domM,k|

 ·

 ∑
α∈f−1

M (β)

1
|domM,k|
|f−1

M (β)|
|domM,k|

· log2

 1
|domM,k|
|f−1

M (β)|
|domM,k|



−
∑

α∈domM,k

 ∑
β∈fM (α)

1

|imageM,k|

 ·

 ∑
β∈fM (α)

1
|imageM,k|
|fM (α)|

|imageM,k|

· log2

 1
|imageM,k|
|fM (α)|

|imageM,k|


=

1

|domM,k|
·
∑

β∈imageM,k

|f−1
M (β)| · log2(|f−1

M (β)|) + 1

|imageM,k|
·
∑

α∈domM,k

|fM (α)| · log2(|fM (α)|)

NDSqk(M) =−

 ∑
α∈f−1

M (β′)

1

|f−1
M (β′)|

 ·

 ∑
α∈f−1

M (β′)

1

|f−1
M (β′)|

· log2
(

1

|f−1
M (β′)|

)

−

 ∑
β∈fM (α′)

1

|fM (α′)|

 ·

 ∑
β∈fM (α′)

1

|fM (α′)|
· log2

(
1

|fM (α′)|

)
=log2(|f−1

M (β′)|) + log2(|fM (α′)|)

Figure 4: Definition of NDSqk(M) under maximum entropy (top) and under maximum information balance (loss and gain) (bottom)

3.2. Maximum Information Balance (Loss and Gain)
In this approach we look for a distribution that max-

imises the difference in information produced by the FSM.
For the set of inputs, such distribution is the one that is
uniformly distributed over the largest inverse image of an
element of the outputs and zero elsewhere. This distribu-
tion achieves maximum loss of information [8]. Similarly,
for the set of outputs, the distribution that achieves the
maximum gain of information is the one that is uniformly
distributed over the largest image of an input and zero
elsewhere.

Formally, consider β′ ∈ imageM,k such that for all β ∈
imageM,k we have that |f−1

M (β′)| ≥ |f−1
M (β)|. Then,

σξdomM,k
(α) =


1

|f−1
M (β′)| if α ∈ f−1

M (β′)

0 otherwise

Similarly, consider α′ ∈ domM,k such that for all α ∈
domM,k we have that |fM (α′)| ≥ |fM (α)|. Then,

σξimageM,k
(β) =


1

|fM (α′)| if β ∈ fM (α′)

0 otherwise

After using these probability distributions in the gen-
eric definition of Non-Deterministic Squeeziness, the for-
mulation can be found in Figure 4 (bottom).

4. Experiments

In order to evaluate the effectiveness of Non-Determi-
nistic Squeeziness to assess FEP, we conducted two types

of experiments. The first category includes experiments
conducted to preliminary test the proposal and to observe
its behaviour in limit cases, that is, using small and huge
subjects. In the second category we test our proposal on
FSMs extracted from a benchmark. The code, results and
experimental subjects of our experiments can be found at
https://github.com/Colosu/NDSq.

First, we will introduce the research questions that we
asked ourselves to evaluate the effectiveness of our pro-
posal.

4.1. Research questions

The goal of our work is to properly evaluate the likeli-
hood of FEP in non-deterministic systems. Therefore, our
first step is to assess how well Non-Deterministic Squeezi-
ness addresses this problem.

Research Question 1. Is there a strong correlation between
Failed Error Propagation and Non-Deterministic Squeezi-
ness? Is this correlation stable along different situations?

We would also like to compare our new proposal and
our previous one to empirically decide whether we really
needed an improved version of Squeeziness.

Research Question 2. Is the correlation between Failed
Error Propagation and Non-Deterministic Squeeziness higher
than the correlation between Failed Error Propagation and
Squeeziness?

Additionally, we would like to see how Non-Determi-
nistic Squeeziness performs over FSMs so that we can infer
how it will behave when applied to other systems.
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Research Question 3. Is there a correlation between Failed
Error Propagation and Non-Deterministic Squeeziness when
applied over FSMs?

Finally, we would like to explore the performance of
Non-Deterministic Squeeziness, compared to the perform-
ance of Squeeziness, to check whether there is a high extra
computation cost for using the non-deterministic version.

Research Question 4. Is the extra computation time needed
for Non-Deterministic Squeeziness an important perform-
ance issue?

4.2. Experiments I: Simulated systems

Our first set of experiments used simulations so that we
could quickly assess the suitability of our approach and ex-
plore its behaviour in limit cases. These experiments also
provide an estimation on how our proposal could perform
for big systems (with up to 100, 000 inputs), in order to
test its scalability. We followed the methodology presented
in previous work on Squeeziness [8, 10] to perform these
experiments.

Maximum Pearson Pearson
Maximum # outputs correlation correlation
# inputs from with with
to same same Non−Det. Det.

# Inputs output input Squeeziness Squeeziness
100 10 10 0.8912 0.7374

50000 10 10 0.7217 0.9377
50000 20 10 0.5987 0.5300
50000 20 20 0.6437 0.6470

100000 20 10 0.5163 0.5494
100000 20 20 0.3757 0.6118
100000 50 10 0.4458 −0.3832
100000 50 20 0.5332 −0.3582
100000 100 10 0.9846 0.3869
100000 100 20 0.9825 0.3488

Table 1: Outstanding results of the simulated experiments

The experimental subjects were created at run-time.
Our algorithm does not use the internal structure of the
FSM because it only needs the input and output sets and
their association (that is, which inputs produce a certain
output). First, we need to set the relevant parameters:
number of inputs, the maximum number of inputs that can
lead to an individual output, and the maximum number of
outputs that can be generated by one input. Using these
three values, a set of outputs, with associated number of
inputs that lead to each of them, is randomly generated.
Next, it is necessary to assign to each input the number
of outputs that can be produced by them. Finally, the
process of associating each input with their corresponding
outputs begins. If we end up with inputs that do not have
outputs left to be associated with them, according to the
preset bounds, then new outputs are generated so that the
process can conclude.

We generated 200 experimental subjects, according to
the parameters, and computed the addition of PColl and

PDiff and the corresponding Non-Deterministic Squeezi-
ness values. In order to compute Non-Deterministic Squee-
ziness we applied the Maximum Entropy Principle, thus
assuming a uniform probability distribution. Then, we
compute Pearson and Spearman correlations between PColl
+ PDiff and Non-Deterministic Squeeziness. The whole
process is repeated 10 times and the mean of these 10 cor-
relation values is presented as the final correlation for the
initial parameters.

This experiment is repeated with 178 sets of different
parameter values. In Table 1 we enumerate the ten most
interesting cases. Specifically, we show all the entries with
a correlation lower than 0.7, the two highest values entries,
and the first result to have a representation of the entries
with small number of inputs. The results can be found
in Tables 2, 3 and 4. In these tables we only show Pear-
son correlation values because Spearman correlation values
were almost the same (this is not the case in our second
set of experiments). We can observe that the correlations
range from 0.3757 to 0.9846, all positive values, and there
are only 6 cases, out of 178 entries, with correlation lower
than 0.7. Therefore, 96.65% of the experiments returned
correlations higher than 0.7. Moreover, 88.83% of them
have a correlation higher than 0.9. This implies a strong
correlation between the addition of PColl and PDiff, and
Non-Deterministic Squeeziness. Moreover, the correlation
is very stable for most of the scenarios, with only 6 ir-
regular cases. These cases correspond to situations where
the number of inputs is much higher than the potential
non-determinism. We provide a more detailed discussion
about this effect in Section 5.

In order to compare the performance of Squeeziness
and Non-Deterministic Squeeziness, we decided to com-
pute Squeeziness at the same time when executing these
experiments. Then, we performed a statistical signific-
ance test to check whether the results corresponding to
Squeeziness and Non-Deterministic Squeeziness were sim-
ilar. To be precise, we explored the null hypothesis that
claims that the results provided by both notions follow the
same probability distribution. First, we performed an ho-
mogeneity of variance check that arose a negative value.
Thus, we performed a Kruskal-Wallis H-test that returned
a p-value of 7.78 · 10−57. This represents that there is
an almost null probability that the null hypothesis holds.
Therefore, we can reject the null hypothesis with a con-
fidence higher than 99% (its p-value is lower than 0.01).
In order to double-check our results, we also performed a
t-test and obtained a lower p-value (of 1.1 ·10−101). Thus,
the conclusion is that the performance of Non-Determinis-
tic Squeeziness and Squeeziness are not similar and we can
conclude that Non-Deterministic Squeeziness is better in
our scenario.

4.3. Experiments II: using FSMs

In order to evaluate Non-Deterministic Squeeziness over
FSMs representing systems, we considered experimental sub-
jects extracted from a well-known benchmark, the ACM/SIGDA
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Maximum Pearson Pearson
Maximum # outputs Correlation Correlation
# inputs from with with
to same same Non−Det. Det.

# Inputs output input Squeeziness Squeeziness
100 10 10 0.8912 0.7374
100 20 10 0.9181 0.4212
100 20 20 0.9377 0.2277
100 50 10 0.9694 0.1075
100 50 20 0.9689 0.0494
100 50 50 0.9682 0.0547
200 10 10 0.9126 0.7488
200 20 10 0.8988 0.5883
200 20 20 0.9244 0.3776
200 50 10 0.9466 0.1441
200 50 20 0.9465 0.0797
200 50 50 0.9503 0.0555
200 100 10 0.9715 0.0937
200 100 20 0.9695 0.0726
200 100 50 0.9708 0.1196
200 100 100 0.9695 0.0675
500 10 10 0.9737 0.7974
500 20 10 0.9063 0.6535
500 20 20 0.9056 0.5045
500 50 10 0.9150 0.4930
500 50 20 0.9419 0.1845
500 50 50 0.9527 0.0879
500 100 10 0.9349 0.2353
500 100 20 0.9535 0.0583
500 100 50 0.9547 0.0252
500 100 100 0.9503 0.0619
500 200 10 0.9659 0.0177
500 200 20 0.9606 0.0077
500 200 50 0.9623 −0.0154
500 200 100 0.9621 −0.0190
500 200 200 0.9599 −0.0026

1000 10 10 0.9736 0.8715
1000 20 10 0.9215 0.6510
1000 20 20 0.9163 0.5674
1000 50 10 0.9274 0.5330
1000 50 20 0.9205 0.3899
1000 50 50 0.9587 0.0580
1000 100 10 0.9266 0.4663
1000 100 20 0.9446 0.1667
1000 100 50 0.9561 0.0529
1000 100 100 0.9522 0.0188
1000 200 10 0.9401 0.2611
1000 200 20 0.9530 −0.0006
1000 200 50 0.9566 −0.0026
1000 200 100 0.9524 −0.0058
1000 200 200 0.9523 −0.0084
1000 500 10 0.9730 0.0881
1000 500 20 0.9699 0.0823
1000 500 50 0.9702 0.0515
1000 500 100 0.9708 0.0950
1000 500 200 0.9715 0.0410
1000 500 500 0.9712 0.0867

Table 2: Results of the simulated experiments (part 1)

Maximum Pearson Pearson
Maximum # outputs Correlation Correlation
# inputs from with with
to same same Non−Det. Det.

# Inputs output input Squeeziness Squeeziness
2000 10 10 0.8882 0.9097
2000 20 10 0.9535 0.6630
2000 20 20 0.9278 0.5418
2000 50 10 0.9194 0.5777
2000 50 20 0.9286 0.4059
2000 50 50 0.9303 0.2276
2000 100 10 0.9320 0.5057
2000 100 20 0.9331 0.3188
2000 100 50 0.9581 0.0336
2000 100 100 0.9599 0.0473
2000 200 10 0.9336 0.3896
2000 200 20 0.9437 0.1691
2000 200 50 0.9586 0.0546
2000 200 100 0.9583 −0.0254
2000 200 200 0.9537 0.0378
2000 500 10 0.9492 0.0520
2000 500 20 0.9549 −0.0531
2000 500 50 0.9560 −0.0175
2000 500 100 0.9556 −0.0252
2000 500 200 0.9559 0.0207
2000 500 500 0.9578 −0.0009
5000 10 10 0.7601 0.9125
5000 20 10 0.9789 0.6141
5000 20 20 0.9664 0.5325
5000 50 10 0.9292 0.5693
5000 50 20 0.9368 0.4776
5000 50 50 0.9420 0.3050
5000 100 10 0.9375 0.5718
5000 100 20 0.9370 0.4148
5000 100 50 0.9401 0.2414
5000 100 100 0.9583 0.0869
5000 200 10 0.9344 0.5213
5000 200 20 0.9307 0.3866
5000 200 50 0.9576 0.0951
5000 200 100 0.9646 −0.0014
5000 200 200 0.9606 0.0707
5000 500 10 0.9281 0.4008
5000 500 20 0.9473 0.1617
5000 500 50 0.9567 −0.0151
5000 500 100 0.9576 −0.0256
5000 500 200 0.9575 −0.0010
5000 500 500 0.9579 0.0479

10000 10 10 0.7221 0.9159
10000 20 10 0.8862 0.5513
10000 20 20 0.9746 0.5768
10000 50 10 0.9400 0.5575
10000 50 20 0.9371 0.4408
10000 50 50 0.9467 0.3037
10000 100 10 0.9343 0.5694
10000 100 20 0.9409 0.4156
10000 100 50 0.9467 0.2716
10000 100 100 0.9430 0.1703
10000 200 10 0.9412 0.5188
10000 200 20 0.9386 0.3389
10000 200 50 0.9401 0.2230
10000 200 100 0.9626 0.0505
10000 200 200 0.9640 −0.0035
10000 500 10 0.9340 0.4839
10000 500 20 0.9319 0.3029
10000 500 50 0.9616 −0.0237
10000 500 100 0.9618 −0.0083
10000 500 200 0.9635 −0.0065
10000 500 500 0.9601 −0.0222

Table 3: Results of the simulated experiments (part 2)
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Maximum Pearson Pearson
Maximum # outputs Correlation Correlation
# inputs from with with
to same same Non−Det. Det.

# Inputs output input Squeeziness Squeeziness
20000 10 10 0.7207 0.9233
20000 20 10 0.7284 0.5057
20000 20 20 0.8795 0.6133
20000 50 10 0.9577 0.5275
20000 50 20 0.9473 0.4439
20000 50 50 0.9505 0.2777
20000 100 10 0.9359 0.5584
20000 100 20 0.9447 0.3994
20000 100 50 0.9489 0.2609
20000 100 100 0.9546 0.1898
20000 200 10 0.9380 0.5294
20000 200 20 0.9468 0.4245
20000 200 50 0.9527 0.2043
20000 200 100 0.9508 0.1595
20000 200 200 0.9646 0.0686
20000 500 10 0.9380 0.4867
20000 500 20 0.9396 0.3748
20000 500 50 0.9444 0.1971
20000 500 100 0.9659 −0.0063
20000 500 200 0.9622 −0.0113
20000 500 500 0.9645 0.0380
50000 10 10 0.7217 0.9377
50000 20 10 0.5987 0.5300
50000 20 20 0.6437 0.6470
50000 50 10 0.9773 0.3849
50000 50 20 0.9657 0.3799
50000 50 50 0.9574 0.3213
50000 100 10 0.9440 0.5397
50000 100 20 0.9446 0.4274
50000 100 50 0.9558 0.3166
50000 100 100 0.9577 0.1635
50000 200 10 0.9410 0.5575
50000 200 20 0.9442 0.4594
50000 200 50 0.9553 0.2782
50000 200 100 0.9548 0.1574
50000 200 200 0.9489 0.1286
50000 500 10 0.9460 0.5396
50000 500 20 0.9444 0.3939
50000 500 50 0.9505 0.2127
50000 500 100 0.9447 0.1777
50000 500 200 0.9641 0.0243
50000 500 500 0.9657 −0.0021
100000 10 10 0.7612 0.9476
100000 20 10 0.5163 0.5494
100000 20 20 0.3758 0.6118
100000 50 10 0.4458 −0.3832
100000 50 20 0.5332 −0.3582
100000 50 50 0.8772 −0.1103
100000 100 10 0.9846 0.3869
100000 100 20 0.9825 0.3488
100000 100 50 0.9654 0.2656
100000 100 100 0.9648 0.2076
100000 200 10 0.8949 0.7576
100000 200 20 0.9355 0.5278
100000 200 50 0.9547 0.3241
100000 200 100 0.9599 0.1930
100000 200 200 0.9639 0.1122
100000 500 10 0.8638 0.7754
100000 500 20 0.9254 0.5462
100000 500 50 0.9530 0.3266
100000 500 100 0.9536 0.2009
100000 500 200 0.9497 0.0933
100000 500 500 0.9683 0.0262
100000 500 500 0.9651 −0.0247

Table 4: Results of the simulated experiments (part 3)

benchmark1, that has been widely used to evaluate very
heterogeneous algorithms dealing with FSMs. Unfortunately,
these FSMs are deterministic. In order to produce non-
deterministic FSMs, we follow a methodology used in pre-
vious work [20, 24]. Inputs and outputs are strings over
three symbols: {0, 1,−}. If we replace each occurrence
of − by 0 and 1, we obtain two different transitions; if
the input is the same, then we obtain a non-deterministic
FSM. For example, from a transition (q, 10, 0−, q′) we will
obtain two transitions, (q, 10, 00, q′) and (q, 10, 01, q′), and
the resulting FSM will be non-deterministic. In Table 5 we
display the different FSMs with their corresponding number
of states, number of transitions before they were extended,
and number of transitions after they were extended by re-
placing the different occurrences of − by 0 and 1.

For these experiments, we used the AutomataLib [25]
library to deal with FSMs loading, representation, explora-
tion and manipulation. We performed the following steps.
Given a length k, our tool explored each FSM M of the set
and stored all the input and output sequences of length
k, as well as the information of which input generates
which outputs and which output is generated by which
inputs. Then, PCollk(M) + PDiffk(M) and NDSqk(M)
values are computed. In the latter case, we use again
the Maximum Entropy Principle, thus assuming a uniform
probability distribution. Finally, we computed the corres-
ponding Pearson and Spearman correlations. Note that,
for each k, this process is completely deterministic: there
is no need to repeat it.

We were reducing the number of FSMs, out of the 16
initially selected, as we were increasing the value of k.
The problem is that due to computational issues, spe-
cially memory limitations due to combinatorial explosion,
we could not execute all the experiments, for differents k
values, in all the experimental subjects. Moreover, FSMs
with more than 100, 000 transitions had to be discarded
because the Automatalib library could not load them.

For k = 2, we included all the experimental subjects
with less than 100, 000 transitions. We obtained a Pear-
son correlation of 0.9303 and a Spearman correlation of
0.9727. These are really good results, given the limitation
in the size of the input and output sequences. The next
experiment was performed by using all the FSMs with less
than 1, 000 transitions, but expanding the input and out-
put sequences to reach length 7. In this case, we obtained a
Pearson correlation of 0.9889 and a Spearman correlation
of 0.8571. After this experiment, we performed another
one where the experimental subjects were those FSMs with
less than 100 transitions and allowing input and output
sequences of length 9, obtaining a Pearson correlation of
0.5264 and a Spearman correlation of 0.6. Finally, we per-
formed the last experiment, using FSMs with less than 50
transitions, computing the input and output sequences up
to length 11, and we obtained a Pearson correlation of

1https://people.engr.ncsu.edu/brglez/CBL/benchmarks/

index
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Property bbsse cse ex2 ex3 ex5 ex7 keyb kirkman lion mark1 planet sand sse styr train4 train11
States 16 16 19 10 9 10 19 16 4 15 48 32 16 30 4 11
Det

Transitions 56 91 72 36 32 36 170 370 11 22 115 184 56 166 14 25
Non−Det
Transitions 5264 6528 249 126 86 105 10266 228864 16 254656 321648 323712 5264 398256 17 31

Table 5: FSMs used in the second set of experiments and some of their properties

0.9890 and a Spearman correlation of 0.5. The results of
these experiments can be found in Table 6.

With these results we can conclude that our formula-
tion of Non-Deterministic Squeeziness performs really well
over FSMs. Nevertheless, it is also affected by the reduced
correlation effect. We are aware that this effect is observed
only in one case and it is due to one single FSM. A deeper
analysis allowed us to conclude that this effect appears be-
cause the amount of non-determinism is small when com-
pared to the number of inputs. A further discussion about
this effect can be found in Section 5.

In these experiments we also computed the mean com-
putation times needed for both Squeeziness and Non-Deter-
ministic Squeeziness. The results are displayed in Table 6,
where we show the computation time for Non-Determinis-
tic Squeeziness, for Squeeziness, and for exploring the FSM.
As expected, most of the time is used to explore the FSM,
while very little time is used to compute the different val-
ues of Squeeziness and Non-Deterministic Squeeziness. For
example, on average, we need 50.8267 seconds to explore
each of the 11 FSMs considered in the experiment where
k = 2. The total time needed to explore each FSM and com-
pute Non-Deterministic Squeeziness is, on average, equal
to 50.8512, that is, less than 0.05% of the total time is
used to compute our measure. Moreover, the time needed
to compute each of the measures is almost the same. In or-
der to properly compare execution times, we performed a
statistical significance test to check whether the execution
time of both Squeeziness and Non-Deterministic Squeezi-
ness are similar. Specifically, we considered the following
null hypothesis: execution times corresponding to both
notions follow the same probability distribution. To that
end, we performed a one-way ANOVA test2, that obtained
a p-value of 0.97, what represents that there is a 97% prob-
ability that the null hypothesis is fulfilled. Therefore, we
can accept the null hypothesis with a confidence higher
than 95% (its p-value is greater than 0.95). In order to
double-check our results, we also performed a t-test and
obtained the same p-value. Thus, the conclusion is that
the execution times of Non-Deterministic Squeeziness and
Squeeziness are similar. These results show that the extra
time needed to compute Non-Deterministic Squeeziness is
negligible when compared to the time needed to compute
Squeeziness. Finally, if we take into account that Non-
Deterministic Squeeziness is a conservative extension of

2Note that we could use the ANOVA test because we performed
an homogeneity of variance check and it raised a positive result.

Squeeziness, then we can consider using Non-Determinis-
tic Squeeziness even in the deterministic case.

4.4. Research questions answers

We now summarise what the results tell us about the
research questions.

Research Question 1. Is there a strong correlation between
Failed Error Propagation and Non-Deterministic Squeezi-
ness? Is this correlation stable along different situations?

Our results show that the answer to this question is posit-
ive: correlation values are always positive and range between
0.3757 and 0.9846. Moreover, we observed that the correl-
ation is stable along different scenarios, with only special
cases when the correlation drops due to the great differ-
ence between the number of inputs and the amount of
non-determinism.

Research Question 2. Is the correlation between Failed
Error Propagation and Non-Deterministic Squeeziness higher
than the correlation between Failed Error Propagation and
Squeeziness?

The answer to this question is clearly positive because the
correlation of Squeeziness with FEP in a non-deterministic
scenario is clearly poor, having even negative correlations
for many cases. Therefore, the update of Squeeziness to a
non-deterministic version was totally necessary.

Research Question 3. Is there a correlation between Failed
Error Propagation and Non-Deterministic Squeeziness when
applied over FSMs?

The answer to this question is also positive, as there is a
strong correlation between Non-Deterministic Squeeziness
and the addition of PColl and PDiff. The correlations
ranged between 0.5264 and 0.9897, improving the results
obtained by the simulation experiments.

Research Question 4. Is the extra computation time needed
for Non-Deterministic Squeeziness an important perform-
ance issue?

The answer to this question is negative: the extra compu-
tation time is not an important performance issue. Moreover,
it is almost negligible when compared to the time needed
to explore the FSM. Taking into account the little extra
time needed, we can even consider to use Non-Determinis-
tic Squeeziness in the deterministic case, as it will perform
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Length Pearson with Spearman with Total Time Total Time FSM

of #FSMs Non−Det. Non−Det. Non−Det. Det. Exploration
sequences Squeeziness Squeeziness Squeeziness Squeeziness Time

2 11 0.9303 0.9727 50.8512 50.8272 50.8267
7 7 0.9889 0.8571 34.7928 34.7856 34.7708
9 4 0.5264 0.6000 43.5391 43.4797 43.4213
11 3 0.9890 0.5000 56.0021 54.9940 54.9923

Table 6: Results of the FSM experiments on average (times in seconds)

as well as Squeeziness, with a negligible extra computation
time. This is a first step towards a generic tool that can
compute the likelihood of having cases of FEP for any FSM,
indistinctly of it being deterministic or not.

5. Discussion

There are some points that require further discussion.
Specifically, it is important to discuss the decision under-
lying the definition of Squeeziness. Moreover, although
most of the experiments showed good correlations, it is
important to investigate the few cases where correlations
were not that good. Finally, we would like to address the
adequacy of PColl and PDiff to measure FEP and why use
them.

5.1. Squeeziness definition

As explained in Section 3, the definition of Non-Deter-
ministic Squeeziness comes from modifying two formulas
based on mathematical principles and derivations. Spe-
cifically, we remove from these formulas a correction factor.
Therefore, we cannot claim that Non-Deterministic Squee-
ziness is the addition of the information loss and gain pro-
duced by the FSM. However, our decision to define Non-
Deterministic Squeeziness avoiding these correction factors
is based on a simple reason: the use of the original formu-
las (i.e. those including the correction factors) leads to a
total sum of 0. Regarding alternatives, we could simply
use the original formula of Squeeziness including the cor-
rection factor (remember that this factor is equal to 0 for
deterministic systems). Unfortunately, preliminary results
showed that this is a worse option, concerning correlation
with the likelihood of FEP, than our formulation. This be-
haviour is probably produced by the fact that Squeeziness
balances the likelihood of having cases of FEP with the
gain of information produced by non-determinism. How-
ever, as previously discussed, we should consider that in-
formation gain is a new source of FEP. In contrast, our
formulation computes the loss of information produced by
the collisions and the gain of information produced by the
non-determinism and we are adding their effects over FEP,
instead of compensating the effect of one with the other.

Finally, one could ask why we are not defining Squeezi-
ness by simply swapping the sign of the correction factor.
This trick would easily solve the aforementioned problem.

However, this alternative formulation does not obtain bet-
ter correlations (in fact, preliminary experiments showed
really bad correlations). We consider that this difference is
due to the probability distributions choice: in the formula-
tion of Squeeziness we use the probability distribution over
the inputs of the FSM, while in the one corresponding to
Alternative Squeeziness we use the probability distribution
over the outputs of the FSM. This apparently harmless de-
cision is in fact the key to the success of Non-Deterministic
Squeeziness. The reason is that when using the Squeezi-
ness formula, the correction factor (the part addressing
the information gained) is determined by the probability
of the inputs instead of being determined by the one of the
outputs (as in the Alternative Squeeziness formula). The
probability induced over the outputs is not necessarily uni-
formly distributed (because a uniform probability over the
inputs does not always generate a uniform probability over
the outputs). Thus, the obtained values after computing
the formula are different, leading to better empirical res-
ults for our Non-Deterministic Squeeziness formulation.

5.2. Correlation Results

It is clear that, for a few cases, we obtain lower cor-
relations than desired. A careful study of the results from
the simulations showed that low correlations correspond
to systems with low non-determinism and high number
of inputs. Our definition of non-deterministic Squeeziness
is conservative with respect to the deterministic version
of Squeeziness, that is, deterministic FSMs will return the
same value with both versions. However, FSMs with really
small amounts of non-determinism can produce, due to
the logarithmic nature of the formula, a greater influence
of the non-deterministic factor than the one supposed to
be. We think that this is the main cause of the observed
results, but further research is necessary to properly assess
this assumption.

5.3. PColl and PDiff

PColl and PDiff are really interesting measures to as-
sess the likelihood of FEP because they are able to estimate
the effect of different FEP sources (what we have call col-
lisions and diffusion). A fundamental question is why we
are using a more complex formula if we can use these two
simpler ones. To answer this question, we present two
arguments. First, PColl and PDiff assume uniform dis-
tributions but those are not always the best distribution
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to assess the likelihood of FEP, as explained in Section 3.
Specifically, PColl and PDiff are not trivially adaptable to
other probability distributions, and thus we would need
to develop a different formula for each probability dis-
tribution. In contrast, Non-Deterministic Squeeziness is
ready to be used with different probability distributions,
as they are part of its parameters. Second, there is poten-
tial to simplify the Non-Deterministic Squeeziness formula
using novel research in Information Theory. Possibilities
for adaptation to an approximate computation of Squeezi-
ness come also from the quantifying information flow field,
such as a bounded model checking approach [26], a statist-
ical approach to estimate flow quantity [27], and a syntax
based approximation [28].

6. Threats to Validity

In order to ensure the validity of the obtained results,
we need to address the potential threats that can invalid-
ate them. We start with the threats to internal validity,
which refer to uncontrolled factors that can affect the out-
put of the experiments, either in favour or against our
hypothesis. The main threat in this category is the pos-
sibility of having faults in the code of the experiments.
To diminish this threat we carefully tested the code, even
using small examples for which we know what were the
expected results. Additionally, in order to reduce the im-
pact of the randomness associated with our simulated ex-
periments, we repeated our experiments several times and
computed mean values.

The next category, threats to external validity, refers to
the generality of our findings in other situations. The main
threat in this category is the choice of experimental sub-
jects. As the population of FSMs is unknown, this threat
is not fully addressable. However, we used a carefully con-
structed benchmark that aims to represent real systems to
try to diminish this threat.

Finally, the last category is threats to construct valid-
ity, which refer to the relevance of the properties we are
measuring for the extrapolation of the results to real-world
examples. The main threat in this category is how to prop-
erly measure the likelihood of having FEP. We addressed
this threat using PColl and PDiff for estimating how much
FEP is generated due to different processes. An extended
discussion about the suitability of these formulas for this
task was presented in Section 5. The other big threat in
this category is whether the FSMs used in the experiments
correspond to possible system components. In order to
reduce the impact of this threat, we restricted our range
of FSM samples to non-deterministic FSMs obtained from a
widely known benchmark, used in many previous research
papers.

7. Conclusions and Future Work

Failed Error Propagation (FEP) is an important prob-
lem in the Software Testing field: it can hamper the whole

testing process by masking faults. Squeeziness has been
proposed to assess the likelihood of having FEP in de-
terministic systems, obtaining a high correlation between
these two values. we have extended Squeeziness to deal
with non-deterministic FSMs, introducing Non-Determinis-
tic Squeeziness. This proposal combines the potential max-
imum loss of information and the potential maximum gain
of information that a system can produce to assess its like-
lihood of having FEP.

In order to validate the usefulness of our proposal, we
conducted several experiments. We classified those exper-
iments in two categories: simulated experiments and FSM

experiments. In both cases, our proposal obtained high
correlations with the likelihood of FEP. Moreover, those
correlations were stable along different situations. There
were a small number of cases where we obtained not so high
correlations. After a careful analysis, we concluded that
they were produced due to the FSM having a high number
of input sequences and a lower amount of potential non-
determinism. Thus, we concluded that our proposal is a
good tool for assessing FEP.

We also evaluated how our proposal compares with
Squeeziness and we found that it outperforms it in non-
deterministic systems with only a negligible increment in
computation time. Moreover, if we add the fact that our
proposal is conservative with respect to the deterministic
formula (that is, for a deterministic system it computes the
deterministic Squeeziness value), we can conclude that our
proposal is a generalisation of the previous notion that can
be applied in any system.

For future work, we devise some research lines. The
first one focuses on refining our formula so that we solve
the problem of the not so high correlations in limit cases. A
second line would consider the implementation of this for-
mula in a tool that can automatically assess FEP, extending
our previous work [15]. A third line would explore the de-
velopment of a fully probabilistic version of our framework
where we do not assume, by default, uniform distributions.
In this case, we need to start with a specification of the
SUT that indicates the expected probabilities, quantify-
ing choices between different alternatives, governing the
SUT. Since in testing is important to distinguish between
inputs and outputs, we will build on top of previous work
where we used probabilistic extensions of FSMs [29] and In-
put Output Transition Systems [30, 31]. Finally, a fourth
line would focus on adapting our framework to deal with
the non-determinism produced in systems with asynchron-
ous communications [32, 33]. In this line, we would like
to evaluate our approach in real IoT architectures where
asynchrony plays an important role [34, 35]
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Appendix A. Derivation of Squeeziness formula

Next we present the derivation of the formula presented
in Equation 2. First, we consider conditional entropy [23],
which tell us that H(ξdomM,k

|ξimageM,k
) is equal to∑

β∈imageM,k

σξimageM,k
(β) · H(ξdomM,k

|ξimageM,k
= β)

Next, we apply the notion of conditional probability and
take into account that ξdomM,k

restricted to ξimageM,k
= β

is the random variable ξf−1
M (β) ranging over f−1

M (β) and

whose probabilities are equal to

σξdomM,k
(α)

σξdomM,k
(f−1

M (β))
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Therefore, we have that

H(ξdomM,k
|ξimageM,k

= β) =

= H(ξf−1
M (β))

= −
∑

α∈f−1
M (β)

σξ
f
−1
M

(β)
(α) · log2(σξ

f
−1
M

(β)
(α))

= −
∑

α∈f−1
M (β)

σξdomM,k
(α)

σξdomM,k
(f−1

M (β))
· log2

(
σξdomM,k

(α)

σξdomM,k
(f−1

M (β))

)

Next, we have that H(ξdomM,k
|ξimageM,k

) is equal to

−
∑

β∈imageM,k

σξimageM,k
(β) ·

 ∑
α∈f−1

M (β)

θ(α) · log2(θ(α))

 (A.1)

where θ(α) = σξ
f
−1
M

(β)
(α). Using an equivalent derivation,

we can conclude that the term H(ξimageM,k
|ξdomM,k

) is equal
to

−
∑

α∈domM,k

σξdomM,k
(α) ·
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β∈fM (α)

θ(β) · log2(θ(β))

 (A.2)

where θ(β) = σξfM (α)
(β). Here, the random variable ξfM (α)

ranges over fM (α) and its probabilities are equal to

σξimageM,k
(β)

σξimageM,k
(fM (α))

=
σξimageM,k

(β)∑
β∈fM (α)

σξimageM,k
(β)

In the next step, we apply the Chain rule to Equa-
tion A.1 and obtain the following expression:

H(ξimageM,k
, ξdomM,k

) = H(ξimageM,k
) +H(ξdomM,k

|ξimageM,k
)

where H(ξimageM,k
, ξdomM,k

) is the joint probability of the
two random variables. After another application of the
Chain rule, in this case to Equation A.2, we obtain the
following:

H(ξimageM,k
, ξdomM,k

) = H(ξdomM,k
) +H(ξimageM,k

|ξdomM,k
)

If we combine the previous equalities we obtain

H(ξimageM,k
) +H(ξdomM,k

|ξimageM,k
)

∥
H(ξdomM,k

) +H(ξimageM,k
|ξdomM,k

)

This is the formula that we showed in Equation 1. Now
we can rewrite Squeeziness as

Sqk(M) = H(ξdomM,k
|ξimageM,k

)−H(ξimageM,k
|ξdomM,k

)

Using Equations A.1 and A.2 and the fact that

σξimageM,k
(β) =

∑
α∈f−1

M (β)

σξdomM,k
(α)

we can finally rewrite Squeeziness as
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and the term R′′
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Appendix B. Proof of Corollary 1

In this appendix we give the proof of Corollary 1. This
result can ge used to deduce an alternative characterisation
of Non-Deterministic Squeeziness.
Corollary 1. Let M = (Q, qin, I, O, T ) be an FSM and
k > 0. Let us consider a random variable ξimageM,k

ranging
over the image of fM,k. We have that

AlSqk(M) = −
∑

α∈domM,k

 ∑
β∈fM (α)

σξimageM,k
(β)

 · R′
M (α) + S ′

M

where the term R′
M (α) is equal to

∑
β∈fM (α)

σξimageM,k
(β)

σξimageM,k
(fM (α))

· log2

(
σξimageM,k

(β)

σξimageM,k
(fM (α))

)

and the term S ′
M is given in Figure 3.

Proof. We start with the definition of conditional en-
tropy [23], which tell us that H(ξimageM,k

|ξdomM,k
) is equal

to ∑
α∈domM,k

σξdomM,k
(α) · H(ξimageM,k

|ξdomM,k
= α)

Next, we apply the notion of conditional probability and
take into account that ξimageM,k

restricted to ξdomM,k
= α is

the random variable ξfM (α) ranging over fM (α) and whose
probabilities are equal to

σξimageM,k
(β)

σξimageM,k
(fM (α))
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Therefore, we have that

H(ξimageM,k
|ξdomM,k

= α) =

= H(ξfM (α))

= −
∑

β∈fM (α)

σξfM (α)
(β) · log2(σξfM (α)

(β))

= −
∑

β∈fM (α)

σξimageM,k
(β)

σξimageM,k
(fM (α)) · log2

(
σξimageM,k

(β)

σξimageM,k
(fM (α))

)

An immediate consequence is that H(ξimageM,k
|ξdomM,k

)
is equal to

−
∑

α∈domM,k

σξdomM,k
(α) ·

 ∑
β∈fM (α)

θ(β) · log2(θ(β))

 (B.1)

where θ(β) = σξfM (α)
(β). Using an equivalent derivation,

we can conclude that the term H(ξdomM,k
|ξimageM,k

) is equal
to

−
∑

β∈imageM,k

σξimageM,k
(β) ·

 ∑
α∈f−1

M (β)

θ(α) · log2(θ(α))

 (B.2)

where θ(α) = σξ
f
−1
M

(β)
(α). Here, the random variable

ξf−1
M (β) ranges over f−1

M (β) and its probabilities are equal
to

σξdomM,k
(α)

σξdomM,k
(f−1

M (β))
=

σξdomM,k
(α)∑

α∈f−1
M (β)

σξdomM,k
(α)

Now, if we apply the Chain rule to Equation B.1 then
we have

H(ξdomM,k
, ξimageM,k

) = H(ξdomM,k
) +H(ξimageM,k

|ξdomM,k
)

where H(ξdomM,k
, ξimageM,k

) is the joint probability of the
two random variables. Applying the Chain rule to Equa-
tion B.2, we also have

H(ξdomM,k
, ξimageM,k

) = H(ξimageM,k
) +H(ξdomM,k

|ξimageM,k
)

Combining the previous equalities we obtain

H(ξdomM,k
) +H(ξimageM,k

|ξdomM,k
)

∥
H(ξimageM,k

) +H(ξdomM,k
|ξimageM,k

)

and this is the formula given in Equation 1. Now we can
rewrite Alternative Squeeziness as

AlSqk(M) = H(ξimageM,k
|ξdomM,k

)−H(ξdomM,k
|ξimageM,k

)

Using Equations B.1 and B.2 and the fact that

σξdomM,k
(α) =

∑
β∈fM (α)

σξimageM,k
(β)

we can finally rewrite Alternative Squeeziness as

AlSqk(M) = −
∑

α∈domM,k

 ∑
β∈fM (α)

σξimageM,k
(β)

 · R′
M (β)

+
∑

β∈imageM,k

σξimageM,k
(β) · R′′′

M (α)

where the term R′
M (β) is equal to

∑
β∈fM (α)

σξimageM,k
(β)

σξimageM,k
(fM (α))

· log2

(
σξimageM,k

(β)

σξimageM,k
(fM (α))

)

and the term R′′′
M (α) is given by the following expression:

∑
α∈f−1

M (β)

∑
β∈fM (α)

σξimageM,k
(β) · log2


∑

β∈fM (α)

σξimageM,k
(β)

∑
α∈f−1

M (β)

∑
β∈fM (α)

σξimageM,k
(β)


∑

α∈f−1
M (β)

∑
β∈fM (α)

σξimageM,k
(β)
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