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Abstract

In personalised health, small datasets with missing data are quite common.
Current Machine Learning methods are unable to process such datasets in a
meaningful way due to the huge data volume requirement. To address this
problem, we propose a new Small and iNcomplete Dataset Analyser (SaNDA)
to process such datasets in a meaningful way. Due to the characteristics of
these datasets and the criticality of the domain, an explainable method is
mandatory to facilitate decision-making interpretation. Thus, SaNDA pri-
oritises explainability over efficiency by design. We evaluated our proposal
against Random Forest as a baseline for explainable methods, and against
gcForest as state-of-the-art for small datasets. We observed that our pro-
posal outperforms Random Forest when there is more missing data and/or
lower number of entries in the dataset, obtaining less favourable results over
larger, well-curated datasets. It is also preferable than gcForest due to its
explainability and privacy protection capabilities. Given the difficulties in
obtaining complete, reliable data in the healthcare field, we consider that
our proposal could be useful for practitioners.

Keywords: Personalised Health, Small Data, Machine Learning, Data
Science

1. Introduction

In personalised health, small and incomplete datasets are the norm, in
the form of what has been termed “small data” [18]. Due to the nature of the
studies performed, recording data is an expensive and laborious task, often
prone to errors. The daily work of a clinician is a balance between time and
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accuracy of the assessment, whereas data collection for secondary use is not
a central concern. Moreover, the data is usually collected with the aim to
improve a single unit such as city, hospital, or healthcare system, thus having
a limited scope [18]. This makes the collection of data an error-prone process,
where on the one hand the data collected usually integrates a semantic bias
coming from variations in context, uncertainties in measurements, and from
basic intuition utilised during diagnosis; and on the other hand inconsisten-
cies arise from the impossibility of the available disease classification protocol
to accommodate all the possibilities (ICD9/ICD10) [5, 33], and from infor-
mation incompleteness produced by the mobility of the individuals within
the healthcare system without clear tracking. This results in difficulties gen-
erating big, clean and well-curated data sets. To facilitate overcoming these
limitations, a definition of the minimal or standard content to be recorded
would be useful. However, such definition has not been set yet, due to lack
of agreement on the amount of information needed.

Traditional Machine Learning (ML) methods under-perform when pro-
vided with this kind of datasets [11]. Due to the statistical nature of learn-
ing algorithms, and the required generalisation techniques, a huge amount
of data is necessary to obtain satisfactory results with these methods. More-
over, these methods usually rely on clean and complete datasets, filling or
removing empty entries. These requirements make the use of ML methods
to analyse small and/or incomplete datasets almost pointless, as the results
would be of limited use.

Moreover, several crucial fields started demanding insights and explana-
tions about the inner decision-making process of automatic systems, such as
finance, privacy, law, and healthcare [2, 3, 29, 37]. This rising concern re-
sulted in the recital 71 of the General Data Protection Regulation (GDPR)
of the European Union and in the Algorithmic Accountability Act decreed by
the US congress (H.R. 6580 of 2022) [22, 12]. A new current, named eXplain-
able AI (XAI), acknowledged this necessity and formulated its principles in
terms of transparency, interpretability, and explainability [3]. Providing a
system able to explain its inner functioning can be exploited to ensure fair-
ness, remove or limit biases, and improve the performance by changing the
inference process. Building transparent models can lead to an inferior perfor-
mance than current learning techniques, but these perks are more valuable in
delicate contexts, and can be improved to the state-of-the-art performance
in the long run. Understanding the functioning of an automatic decision
process is also essential to become trustworthy for its final users, such as
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clinicians and patients. Thus, traditional ML methods, and especially Deep
Learning methods, are not useful in this context due to their opaque nature,
often referred as ”black box”. The only widely accepted method that fills
this requirement is Decision Trees, and its improved version, Random For-
est. However, these methods cannot deal with missing data. Nevertheless,
we will use them as a baseline to compare our proposal with, since they have
properties we would require in any system designed for tackling medical data.

All these factors result in plenty of incomplete, small datasets being pro-
duced in the healthcare field that cannot benefit directly from classical ML
methods. Thus, there is a need for novel methods specially designed to
deal with such datasets. In the field, it is assumed that representation
of the knowledge emerging from data, suited for self-supervised learning
would be richer than those generated by supervised learning using labeled
data [16, 32, 38]. In this work we present our first approach to explore emer-
gent knowledge mined from available data. Specifically, we aim to develop
a tool able to analyse and produce meaningful results from small, incom-
plete datasets, while at the same time being explainable and GDPR com-
pliant. Our proposal is a Small and iNcomplete Dataset Analyser we call
SaNDA. It comprises a statistically defined stratification mechanism, allow-
ing for a better understanding of the relevant features that define the classes
in which we split the data. It integrates three phases: data abstraction, to
preserve data privacy while allowing better decision making on complex sce-
narios [19]; knowledge graph generation, to provide explainability through
knowledge graphs [21, 8]; and classification, to validate the generated knowl-
edge graphs [35].

To evaluate the effectiveness of our proposal in analysing reality, we de-
vised some experiments comparing it with Random Forest - the explainable
ML method par excellence -, and gcForest - the state-of-the-art for dealing
with small datasets. We compared their capability of performing a binary
classification task, over small and medium size datasets with different levels
of missing data. The results show that our proposal beats Random Forest
when the level of missing data increases, or when the size of the dataset
gets smaller. They also show that our proposal is better suited for dealing
with missing data and imbalanced datasets. This shows that our proposal
achieves its goals, being better fitted for small, incomplete datasets, like the
ones we can find in the healthcare research field.

Additionally, SaNDA provides a graph-like visualization of the learned
data, as well as the raw numbers of such graph. As a tool, it would allow
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any practitioner to qualitatively (and quantitatively) analyse the relevance
of different features for the binary classification task at hand. This could be
very useful for practitioners that need to know which features of their dataset
are more relevant for determining the class of a sample, what is something
most ML methods cannot provide in a human understandable way.

The rest of the paper is organised as follows: In Section 2 we briefly
introduce previous work related to our proposal. In Section 3 we introduce
two basic concepts essential for understanding the work done in this paper.
In Section 4 we explain our proposal in detail. In Section 5 we present the
experiments performed to validate our proposal. In Section 6 we explain
some decisions taken during the development of our proposal. In Section 7
we discuss the threats to the validity of our results. Finally, in Section 8 we
present the conclusions of our work.

2. Related Work

From its inception up to the actual advent of big data and computational
power, a fundamental premise behind Artificial Intelligence (AI) has been its
inspiration from natural human intelligence. Achieving common sense and
models of thought, and developing computational approaches able to simu-
late human behaviour were thought to be fundamental elements to achieve
what is now termed Artificial General Intelligence (AGI) [25]. Despite its
ambitious inception, with the advent of the perfect storm of availability of
computational power and increased access to big data, the focus changed
to a brute-force approach on data, deviating from human-inspired machine
intelligence. This line of thought resulted in a generalised idea that, to
achieve machine intelligence comparable with humans, scale is all that is
necessary [26].

However, this trend left behind scenarios where the access to huge amount
of data is not viable. Thus, work on analysing and processing small datasets,
especially small and incomplete datasets, is scarce. Moreover, this kind of
work usually is not connected to the current trend in AI and can not take
advantage of its advancements, like the ones produced in deep learning or
reinforcement learning.

The few works that deal with small datasets usually involve using trans-
fer learning from models trained with huge datasets [40] or developing hand-
crafted methodologies to solve specific problems [41]. There are also few
works that try to adapt classical deep learning methods to learn from small
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datasets [34], but their effectiveness is limited. The closest architecture that
uses non-differentiable modules is Deep Forests [42], which use Cascading
Forest architectures and Multi-Grained Scanning to account for layer-based
processing, feature transformation and complexity. Similar tree-based archi-
tectures are discussed in [14, 7], with specific changes to target problems of
high-dimensionality and class imbalance.

However, in neither of these cases the proposed method is easily explain-
able and/or able to deal with missing values, as we aim to achieve with
our proposal. To the best of our knowledge, our work is the first that tries
to tackle this specific scenario, where we have small datasets with missing
values.

3. Theoretical Background

To understand our work first we need to introduce some basic concepts
we use in it, which are based in previous research. Specifically, we need
to present the concepts of Receiver Operating Characteristic curve theory,
Random Forest, and Cascading Forest.

3.1. Receiver Operating Characteristic curve theory

The Receiver Operating Characteristic (ROC) curve is a statistical method-
ology to analyse binary classifiers. Given a binary classification task, ROC
curve theory defines one of the classes as positive and the other one as neg-
ative. Based on the results of the classification task, this theory defines the
following basic concepts:

• True positives (TP): number of correctly classified samples of the pos-
itive class.

• False positives (FP): number of incorrectly classified samples of the
negative class.

• True negatives (TN): number of correctly classified samples of the neg-
ative class.

• False negatives (FN): number of incorrectly classified samples of the
positive class.
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With these concepts, it is possible to define different formulas to explore
the results of a binary classifier. In our case, we are interested only in the
balanced accuracy (BA) formula (Eq. 1), that measures the accuracy of the
classifier, even under the case of a class imbalance in the dataset.

BA =
TP

TP+FN
+ TN

TN+FP

2
(1)

3.2. Random Forest

Random Forest [6] is one of the simplest Decision Tree based ensemble
learning methods for classification. During training, a multitude of trees are
constructed, and the class label is decided on the basis of the votes of each
tree. Decision Trees use the concept of entropy [23] to create splits or decision
boundaries for each feature in the data; the choice of feature is dependent
on the Maximal Entropy Principle [13]. We chose Random Forest as our
comparison method because it is widely used (especially in industry) as an
explainable method, and performs well on average.

3.3. Cascading Forest

Cascading Forest architectures [42, 14, 7] utilise ensemble of ensembles
methodology to perform similarly to the layered nature of neural networks,
using forests as alternatives to differentiable neurons. This allows the com-
bination of trees to capture more complex conditions. The cascade also uses
boosting, collating the class votes from previous layers into inputs for suc-
ceeding layers. Cascading forests allow a small level of interpretability of de-
cision boundaries, since they potentially scale up to large number of decision
forests leading to large decision diagrams, depending on the hyperparameters
set by the user or the optimisation metric chosen. Of the multiple available
architectures, we chose gcForest [42] due to its simplicity, availability of code,
and design motivation, which are similar to ours. Variations of the gcForest
algorithm have also been used for image classification and modelling genetic
data.

4. SaNDA: a Small and iNcomplete Dataset Analyser

As explained before, our proposal faces a very specific scenario: a small
size dataset with some level of missing values and a binary classification task.
Additionally, it is required to be explainable and GDPR compliant. Further-
more, its representation has to be validated to ensure it is correct. With
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these requirements, we developed a three-stages algorithm: preprocessing,
knowledge graph generation, and classification.

In the preprocessing stage, we introduce measures for privacy protection
and data analysis, as well as a way of dealing with the missing data. We
then transform the preprocessed data into a graph-based representation of
the knowledge comprised in the dataset, extracting the relevant information
in an explainable way. Finally, the classification stage is where the graph
model is validated, classifying the values between the available classes and
obtaining an accuracy measure that represents how well the method has
learnt the patterns in the input data.

The whole process is shown in Figure 1, where each stage has a different
color: the blue blocks compose the preprocessing stage, the green ones build
the graph generation stage, and the orange blocks compose the classification
stage. The knowledge graph generation stage is further divided between the
generation of the Seed Models (dark green) and of the Statistically Augmented
Models (light green), division that we will explain later.
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Accuracy Value
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Figure 1: Process pipeline: SaNDA
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4.1. Preprocessing

In the preprocessing stage we take the input data and generate an ab-
straction of each feature of the dataset. These abstractions allow us to better
normalise the data, as well as to anonymise it. Anonymising the data would
be fundamental to comply with regulations about data protection, such as
GDPR. We define an abstraction as a mapping of the dataset values (origin
set) to a finite set of values with a smaller cardinality (target set).

Definition 1. Given A and B two sets of numerical values, with |A| ≥ |B|,
we define an abstraction as a function F : A → B that maps the values of A
to values of B.

Although the size of the target set could be any natural number (as long
as it is smaller than the size of the origin set), in our case we will explore the
case of a binary set (that is, a set with two values). This decision allows us to
experiment with the family of abstractions that can produce the highest loss
of information. Therefore, any abstraction to a target set with more possible
values should get better results, although exploring it would be matter of
future work. In our specific case, the target set is going to be the set {UP,
DOWN }.

There are multiple possibilities to generate an abstraction, including ab-
stracting to the class labels. However, we would like our abstractions to
keep the information of the raw data as well as maximise the information
available for binary classification. As we are working with numerical data
to be transformed into binary values, we only consider the abstractions that
divide our data into two sets based on a specific cut-off value. Of the many
alternatives to compute cut-off values, we propose the use of ROC curve the-
ory, and specifically the use of balanced accuracy (Eq. 1). This is motivated
by the fact that having a higher balanced accuracy means that the gener-
ated abstraction has a bigger amount of information to discriminate between
the two classes, while at the same time it accounts for imbalanced datasets.
Thus, we look for the cut-off value that produces the abstraction with the
highest balanced accuracy. This way, we will have the set of values greater
than the cut-off value (UP) and the set of values lesser than or equal to the
cut-off value (DOWN ), which results in our binary abstractions.

Formally, the abstracted value of an element is computed using the fol-
lowing formula:

F(x) =

{
UP if x > x′

DOWN if x ≤ x′
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where x′ is the cut-off value. This value fulfils the following formula:

x′ ∈ {x|BA(x) ≥ BA(y) ∀y ∈ A}

where A is the set of values to abstract and BA(x) is the balanced accuracy
obtained by splitting the set A by the cut-off value x.

As explained before in Section 3, we use balanced accuracy (Eq. 1) instead
of the classical concept of accuracy, because balanced accuracy will not be
biased by imbalances in the classes composing the dataset.

Notice that this abstraction is performed independently for each feature
in the dataset. This is a crucial point, since using the same abstraction for
different features will produce undesired effects, especially if different features
have different orders of magnitude. This fact also helps dealing with small
datasets, as we transform a myriad of different values into two values that
keep repeating, thus projecting the data into a discrete space. This makes
modelling the underlying probability distribution easier, as we need fewer
datapoints to represent it.

Finally, it is important to remark that this methodology is a first approach
to generate meaningful abstractions. We based our choice on the ROC curve
theory, as it is commonly used in medical studies to evaluate classifiers [24, 15,
20]. However, further research into developing better abstraction generation
approaches would be required, especially for the case where we have more
than two classes. For now, we consider this useful enough for our proposal,
for the scenario we are exploring.

After computing the abstraction of each feature, the cut-off values and
the balanced accuracy obtained for each feature are recorded. The former
will be useful to enhance the explainability, as an abstraction of a feature to
UP means that the value is higher than the cut-off value and DOWN means
that it is lower; and the latter will be used for analysis in later stages to
determine which features are more relevant for the classification and which
ones are not so relevant, as we can observe in Figure 1.

Once we abstracted the data, we segment it into different groups based
on the class each one belongs to. In this step we compute and store the
probability of each feature being in each state (UP or DOWN ) given the
class of the group analysed. Thus, for each feature, for each class, we get a
different probability for each possible state. These probabilities are the fun-
damental way we deal with small datasets: as we have fewer datapoints to
learn from, we compute the underlying probability distribution directly from
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them, rather than approximating it in an iterative manner. These probabili-
ties will be later on used to evaluate our graph knowledge representation, as
we can observe in Figure 1.

After this segmentation step, we address the problem of missing or null
data. To this end, we replace all the null and missing values for a null token
value, and we store the count of valid values per feature per class, so we end
up with a different count for each class. These counts will be later used for
normalising values when generating our knowledge graph representation, as
we can observe in Figure 1.

The last step is fundamental to deal with incomplete datasets. In classical
Machine Learning, having missing data leads to having to either replace
missing values or discard the entire record, therefore creating fictitious data
or removing useful information. However, these options usually lead to biases
and worse performance, as they are either creating data or discarding data. In
both cases, these modifications lead to modifying the underlying probability
distributions, thus modifying the data from which the method learns. In our
approach, however, we do not create neither discard data, as we just map the
underlying probability distribution with the available data. The fact that we
do this in a per feature basis allows us to not worry if an entry has missing
data for other features, as we analyse each feature separately.

Finally, the last step of our preprocessing stage is transforming these
abstracted and cleaned datasets (one per class) into adjacency files, where
each row is a relationship between two features in their corresponding states.
To this end, we generate an adjacency for each feature of a entry of the
dataset with any other feature of the same entry, skipping those that have
the null token value. After this step, the null values are no longer considered,
as they are being ruled out of the final adjacency file. We have to take special
care of not repeating the adjacencies in the inverse direction, as the graphs
we are going to generate are not directed. This way we get, for the same
feature in the same state, as many adjacencies as it appears in the dataset,
multiplied by the number of other features. In the end, we would get as
many adjacency files as classes, which would allow us to generate a different
knowledge graph representation per class, enabling comparisons.

4.2. Graph Generation

Once we have an abstracted and clean version of our data in a convenient
adjacency file, we generate an explainable knowledge graph representation,
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following the work of [21]. For our purpose, we combine the classical defini-
tion of a weighted graph with the definition of an additional vertex property:

Definition 2. A graph is a set G = {V,E} where V ∈ N is a set of vertices
and E ∈ N × N is a set of edges connecting two vertices. A weighted graph
additionally has a map W : E → R+ ∪ {0} that maps each edge to a weight.
Each vertex has a significance defined by a map S : V → R+ ∪ {0}.

To create these graphs, we load the adjacency files of each class. We
create a node for each feature state in the adjacency file, and the number of
times two feature states appeared together represents the strength of their
edge, normalised by the amount of valid values of both features. Through this
procedure, we build a representation of the class using the available features.
As we have two counts of valid values, one for each feature forming the edge,
we use the smaller value, as the maximum possible number of adjacencies is
determined by the feature that has the lowest number of elements. Finally,
the vertex significances will be the probabilities of each feature being in each
state (UP or DOWN ) given the class, previously stored in the preprocessing
stage. We call these graphs Seed Models (SMs), as they represent the whole
dataset.

After generating the graphs, we also compute the similarity score [30]
between the stratified classes, and the central point dominance [10] and en-
tropy [28] of each class. Additionally, we plot them into a .tiff file where
we can explore them visually, and store in text files the edge weights and the
vertex significances for easy access.

In the second step, we identify the features of low importance for the
classification task. We consider as irrelevant features those having a low
ROC curve accuracy. We use the error margin to distinguish between low
and high-accuracy features.

Definition 3. Given a sample size n and a classification result p, and that
to achieve a confidence of 99% we need to use a z − value of 2.58, we define
the error margin produced in the classification as:

2.58 ·
√

p · (1 − p)

n

We compute this error margin for each feature using the ROC curve
balanced accuracy obtained in the preprocessing stage as p and the size of
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the dataset as n. Then, if the balanced accuracy is under 50% plus the
computed error margin, the feature is considered irrelevant.

Once we have a set of relevant features, we can produce new graphs
using only them and filtering out the irrelevant ones. Thus, we produce
the Statistically Augmented Models (SAM), that are a reduced version of
the original data, including only the relevant information for differentiating
between classes. The graph generation process is identical to the Seed Model
generation except for the adjacencies including irrelevant features, which are
skipped. For these graphs, we also compute the similarity score between the
stratified classes, and the central point dominance and entropy of each of the
classes. As before, we plot them into a .tiff file, and store the edge weights
and the vertex significances into text files.

The visual graph representation enables better exploration of the data
structures and of their relationships across the feature states. We can also
observe how different feature states evolve across classes, and to check these
results with the actual values we have the files storing the edge weights and
vertex significances. An example of the difference between a SAM model
and its respective SM model can be found in Figure 2, where we display the
SM for class 0 and class 1 in the top, and the SAM for those classes in the
bottom. Significant differences in the structure of the graph are visible, from
the number of nodes to the generated communities.

This stage is essential when dealing with small datasets. As we have fewer
datapoints, being able to explore the underlying probability distribution of
each of their features, and the relative relevance of each feature for the final
classification, allows us to get more information about how to properly anal-
yse such datapoints. It also allows us to explore the information arising from
the dataset in a way no other method has provided previously. Thus, even if
we have very few datapoints, we still can get some knowledge out of them.

4.3. Classification

Finally, we aim to classify the entries of the dataset using the generated
graphs. This would allow us to validate that our graphs truly represent the
knowledge comprised in the dataset. To this end, we devised a classification
method that takes, for each class, the vertex significances of the states of
each feature present in the entry and multiply them together, and the class
that obtains a higher value is assigned to the entry. This implies that, if an
entry has empty or null values, these values are not considered for computing
the classification and their corresponding vertex are ignored in the formula.
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Remember that each vertex significance is the probability of its associated
feature being in a specific state (UP or DOWN ), given the class that the
graph represents. Thus, in the classification we are computing the probability
of being in a specific combination of feature states given each class, and we
assign the class with the highest probability.

In a formal way, given an entry X = {x1, · · · , xn}, for each class C we are
computing the following probability:

P (X|C) =
n∏

i=1

P (xi|C) (2)

Then, for the binary classification task, given two classes C1 and C2 and an
entry X = {x1, · · · , xn}, we can compute the following ratio:

PX =
P (X|C1)

P (X|C2)
=

n∏
i=1

(
P (xi|C1)

P (xi|C2)

)
(3)

where if PX > 1 then the entry is more likely to be in the C1 state, otherwise
it is likely to be in C2. For the multi-class case, we would just take the class
with the higher P (X|C).

With this method, we get a different classification for SMs and SAMs.
For classification purposes we will use the SAM since it filters out irrelevant
features.

Finally, given a classification, we compute both its accuracy and its bal-
anced accuracy (Eq. 1). We will use these values to compare our proposal to
other methods, like Random Forest.

5. Experimental Evaluation

To evaluate how well our proposal performs over small to medium size
datasets with missing or null values, we developed a comprehensive exper-
iment. To further strengthen our results, we included a comparison with
Random Forest and gcForest algorithms.

5.1. Experimental Subjects

First, let us introduce the experimental subjects. We took six datasets
which we divided into two groups based on size: small datasets with less than
or equal to 105 datapoints, and medium datasets with between 105 and 108
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Subject Size # features # entries
small size

Ionosphere 11, 934 34 351
Sonar 12, 480 60 208

Wisconsin Breast Cancer 17, 070 30 569
medium size

Accelerometer 408, 000 4 102, 000
HIGGS 2, 800, 000 28 100, 000

Air Pressure System Failure 10, 200, 000 170 60, 000

Table 1: Characteristics of the experimental subjects.

datapoints. Their characteristics can be found in Table 1. All these datasets
are for binary classification.

Following the order of Table 1, the first small dataset is the Ionosphere
dataset [9, 36], which contains 351 measures from the radar analysis of the
ionosphere from Goose Bay, Labrador. It contains 34 features measuring the
number of free electrons in the ionosphere and other electromagnetic signals
from it, all in numeric format. The classification task is to determine whether
the ionosphere has any kind of structure or not.

The second dataset is the Sonar dataset [9, 1], which contains 208 mea-
sures of sonar signals utilised to differentiate between rock and metal surfaces
underwater. It contains 60 features measuring the shape and characteristics
of the sonar signal, all in numeric format. The classification task is to de-
termine whether the signal bounced off a metal cylinder or off a roughly
cylindrical rock.

The third dataset is the Wisconsin Breast Cancer dataset [9, 39], which
contains 569 measures from Fine Needle Aspirates of breast mass. It contains
30 features measuring shape and composition of a breast mass, all in numeric
format. The classification task is to determine whether a breast mass is
cancerous or not.

For the medium size datasets, the first one is the Accelerometer Data
Set [9, 31], containing 102, 000 measures about accelerometer data from vi-
brations of a cooler fan with weights on its blades. It contains 4 features
measuring the vibrations in the 3D space, as well as the velocity of the fan,
all in numeric format. The classification task is to determine the orienta-
tion of the weights in the blades: either in opposite blades (180 deg) or in
neighbouring blades (at 90 deg).
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The second dataset is the HIGGS Data Set [9, 4], which contains 100, 000
measures about particle decay measurements that could contain the Higgs
bosson or not. The data contains kinematic properties of 28 different energy
particle measurements, all in numeric format. The classification task is to
discriminate between signal processes where a Higgs boson was created and
background processes where there were not.

Finally, the last medium size data set is the Scania Trucks Air Pressure
System (APS) Failure Data Set [9], which contains 60, 000 measures on APS
failure in trucks. It contains 170 features measuring different symptoms of
failure in Scania trucks, all in numeric format. As this was an industrial
dataset, the features are anonymised. It is also the only dataset having some
missing values. The classification task is to discriminate between failures
coming from the Air Pressure System (APS) and other failures.

5.2. Experimental Setup

The experimental setup consisted of processing these datasets with both
SaNDA and a Random Forest, and performing a classification of all the
entries. Then, we computed and compared for both models the accuracy
and balanced accuracy (Eq. 1). We repeated this process using the original
datasets, as well as versions with added missing data. In the case of Random
Forest, in order to be able to process the datasets with missing data, we
replace any missing data with 0, as the alternative (erasing the entries with
missing data) would lead to a very small, if not empty, dataset.

To artificially introduce missing data we erased a percentage of values of
the dataset and transformed them into empty values. We did this process
erasing 1%, 5%, 10% and 50% of data values. Then we processed these new
datasets with both methods and obtained the results displayed in Table 2 for
SaNDA and in Table 3 for the Random Forest. In those tables, the winning
method has its values in bold. A graphical visualisation of the results can be
found on Figure 3, where the results of each dataset are displayed together.

As we can observe from the results, the performance depends a lot on the
dataset and the level of missing values. However, there seems to be a trend:
in smaller datasets, SaNDA is better. Also, in datasets with more missing
values, SaNDA is better too, at least if we look at balanced accuracies. More-
over, in general, SaNDA is better than Random Forest the 60% of the time (if
we consider balanced accuracy). Thus, these results reinforce the usefulness
of our proposal for the specific scenario we wanted to address. However, from
these results we can also observe that for medium size datasets, or datasets
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with no missing values, SaNDA is not a better option than Random For-
est. Expanding SaNDA to work also in currently unfavourable scenarios is a
concern to address in future work.

There is an additional interesting conclusion: SaNDA works better when
there is more class imbalance. This can be observed by the fact that SaNDA
beats Random Forest in the datasets that have class imbalance (except the
HIGGS dataset), but also by the fact that it beats Random Forest only in
balanced accuracy for the Air Pressure System Failure dataset.

5.3. Additional Experiment

As an additional experiment, we wanted to explore how SaNDA would
compare with state-of-the-art algorithms focused on dealing with small datasets.
Currently, the best alternative for small datasets is gcForest [42] as discussed
in Section 3. This algorithm is based on a ensemble of forests and it is fo-
cused on dealing with small datasets. However, this algorithm focuses on
efficiency over explainability, so the latter is lower than that of a Random
Forest, while its performance is improved. Thus, we expected that it will get
better results than our proposal, but we wanted to explore how much better.

To compare our proposal against gcForest we decided to use the same
experimental setup than in the previous experiment, exchanging Random
Forest with the gcForest alternative. To compute gcForest, we used the
version that is publicly available courtesy of the authors. The results of the
experiments can be found on Figure 4, where the results of each dataset are
displayed together.

As we can observe, our proposal is worse than gcForest in almost any
scenario except for the Air Pressure System Failure dataset. In this case,
gcForest obtains better accuracy, but the balanced accuracy is worse than
both the accuracy and balanced accuracy obtained by our proposal. This
reinforces the idea that SaNDA works better when there is more class im-
balance. Another case to analyse is the Sonar dataset, where a huge amount
of missing values leads to SaNDA performing better than gcForest. This
reinforces the idea that SaNDA works better when there are more missing
data. In conclusion, having these results, and the fact that SaNDA is more
explainable and privacy safe than gcForest, we conclude that our proposal is
valuable for dealing with the specific scenario we are exploring in this paper.
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6. Discussion

In this section we want to discuss some decisions taken and some char-
acteristics of our proposal. Specifically, we want to talk about why we used
a probability as the vertex significance, and why we do not have a division
between training and testing.

Regarding the computation of the significance of the vertices, a clear con-
cern we had during development was that our solution did not include any
knowledge about the graph structure in the vertex significance. To solve this
concern, we actually explored multiple alternatives (like using the famous
PageRank algorithm [17]). However, amongst the alternatives we tried, the
only one that produced results closer to the results obtained by our proposal
was the use of PageRank with a directed graph in which the edges contained
the conditional probability of having the target feature state given the ori-
gin feature state. However, the results in our main experiment where not
promising at all, obtaining worse results than our proposal for most of our
datasets.

To be precise, we obtained the results displayed in Figure 5, in which we
observe that both directed PageRank and probabilities beat the other one
half of the time. However, while using probabilities delivered better results
compared to Random Forest (beating it 60% of the time), directed PageRank
delivered worse results compared to Random Forest (beating it only 36.66%
of the time).

An important remark here is that, given these results, for some datasets
the directed PageRank version worked better. Moreover, when testing with
our internal datasets, we observed a similar situation, where for some datasets,
this approach was better than our proposal. However, there is not enough
data to conclude that this was a better option than our proposal. Thus,
further work should be done to explore why, for some datasets, directed
PageRank alternative delivers better results.

Regarding the fact that we do not split our dataset into a set for train-
ing and other for testing, we want to stress that the goal of our proposal is
not to classify individuals. Moreover, our proposal does not have any gen-
eralisation mechanism. Thus, the goal of our classification phase is not to
properly classify new individuals, but to give a level of confidence on the
representativeness of the generated graph. All of this implies that we do not
need to assess the generalisation capabilities of our proposal with a testing
phase. Moreover, we actually want to assess how well we have over-fitted to
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our dataset. Thus, the classification phase is done with the same datapoints
as the ones used for training.

7. Threats to Validity

In this section we discuss the possible threats to the validity of our results.
The first kind of threats we consider are the threats to internal validity, that
can explain our results due to uncontrolled factors. The main threat in this
category is the possibility of having faulty code. To reduce this threat we
have carefully tested each piece of code used in our experiments and we have
relied on widely tested libraries like scikit-learn [27] for the Random Forest al-
gorithm and the authors implementation for gcForest. Another threat in this
category is the impact of randomisation in our results. To control this factor
we have controlled the random seeds when needed, for both reproducibility
and comparison purposes.

The second kind of threats are the threats to external validity that hamper
the generality of our results to other scenarios. In our case the only threat
in this category is the small scale experimental setup, having tested our
proposal over six datasets. However, we have performed small experiments
with other internal datasets too, and obtained similar results. Nonetheless,
the exploration of the performance of our proposal in other scenarios remains
part of future work.

Finally, the last kind of threats are the threats to construction validity,
hampering the extrapolation of our results to real-world scenarios. In this
case, the range of possible scenarios is potentially infinite, and this threat
cannot be fully addressed, but as explained before, the exploration of the
performance of our proposal in other scenarios is matter of future work.

8. Conclusions

Small, incomplete datasets are quite common in healthcare research. This
hampers the application of traditional Machine Learning (ML) methods due
to their need for huge amounts of clean data. Moreover, classical ML methods
tend to not be very explainable, what is a basic requirement in a critical
environment like healthcare. Thus, the development of a method to address
this kind of scenarios is fundamental. To that end, we have proposed SaNDA,
a Small and iNcomplete Dataset Analiser, able to deal with small, incomplete
datasets, and at the same time being explainable and GDPR compliant.
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Our proposal has three stages: preprocessing, to prepare the data and
protect privacy; knowledge graph generation, to provide a graphical and ex-
plainable knowledge representation; and classification, to validate the knowl-
edge comprise in the graph knowledge representation. To evaluate our pro-
posal we tested it against the Random Forest and gcForest algorithms over
six small to medium size datasets. The results show that SaNDA performs
better the smaller and the more incomplete a dataset is, and it has a clear
advantage over imbalanced datasets.

For future work, we would like to explore how to extend SaNDA to beat
Random Forest and gcForest also in medium size datasets, and/or in clean
curated datasets. We would also like to explore alternative abstraction gen-
eration methods, specially those able to abstract to more than two classes.
We would like to explore what is the performance of SaNDA in other scenar-
ios too. Finally, we would like to explore alternative methods for the graph
generation, in order to improve SaNDA explainable capabilities.
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ments, discussions and testing of the tool. This research has been supported
by the European Union’s Horizon 2020 research and innovation programme
under grant agreement Sano No 857533. This publication is supported by
Sano project carried out within the International Research Agendas pro-
gramme of the Foundation for Polish Science, co-financed by the European
Union under the European Regional Development Fund. This research was
supported in part by PLGrid Infrastructure.

References

[1] Connectionist Bench (Sonar, Mines vs. Rocks). UCI Machine Learning
Repository.

[2] Plamen Angelov and Eduardo Soares. Towards explainable deep neural
networks (xDNN). Neural Networks, 130:185–194, 2020.

[3] Plamen P. Angelov, Eduardo A. Soares, Richard Jiang, Nicholas I.
Arnold, and Peter M. Atkinson. Explainable artificial intelligence: an

19



analytical review. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 11(5):1–13, 2021.

[4] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in
high-energy physics with deep learning. Nature communications, 5(1):1–
9, 2014.

[5] T. Botsis, G. Hartvigsen, F. Chen, and C. Weng. Secondary Use of
EHR: Data Quality Issues and Informatics Opportunities. Summit on
translational bioinformatics, 2010:1–5, 2010.

[6] L. Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

[7] Hao Chen, Chaoshun Li, Wenxian Yang, Jie Liu, Xueli An, and Yujie
Zhao. Deep balanced cascade forest: An novel fault diagnosis method
for data imbalance. ISA transactions, 126:428–439, 2022.

[8] F. Diaz, C. Shah, T. Suel, P. Castells, R. Jones, T. Sakai, J. Wu,
X. Wang, F. Feng, X. He, L. Chen, J. Lian, and X. Xie. Self-supervised
Graph Learning for Recommendation. Proceedings of the 44th Interna-
tional ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 726–735, 2021.

[9] D. Dua and C. Graff. UCI machine learning repository, 2017.

[10] L. C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, pages 35–41, 1977.

[11] C. Garbin and O. Marques. Assessing methods and tools to im-
prove reporting, increase transparency, and reduce failures in machine
learning applications in health care. Radiology: Artificial Intelligence,
4(2):e210127, 2022.

[12] Bryce Goodman. A Step Towards Accountable Algorithms?: Algo-
rithmic Discrimination and the European Union General Data Protec-
tion. 29th Conference on Neural Information Processing Systems (NIPS
2016), Barcelona, Spain., (Nips):1–7, 2016.

[13] S. Guiasu and A. Shenitzer. The principle of maximum entropy. The
mathematical intelligencer, 7(1):42–48, 1985.

20



[14] Yang Guo, Shuhui Liu, Zhanhuai Li, and Xuequn Shang. Bcdforest: a
boosting cascade deep forest model towards the classification of cancer
subtypes based on gene expression data. BMC bioinformatics, 19(5):1–
13, 2018.

[15] K. Hajian-Tilaki. Receiver operating characteristic (roc) curve analy-
sis for medical diagnostic test evaluation. Caspian journal of internal
medicine, 4(2):627, 2013.

[16] A. Halevy, P. Norvig, and F. Pereira. The Unreasonable Effectiveness
of Data. IEEE Intelligent Systems, 24(2):8–12, 2009.

[17] T. H. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking
algorithm for web search. IEEE Trans. Knowl. Data Eng., 15(4):784–
796, 2003.

[18] E. B. Hekler, P. Klasnja, G. Chevance, N. M. Golaszewski, D. Lewis, and
I. Sim. Why we need a small data paradigm. BMC Medicine, 17(1):133,
2019.

[19] M. K. Ho, D. Abel, T. L. Griffiths, and M. L. Littman. The value of
abstraction. Current Opinion in Behavioral Sciences, 29:111–116, 2019.

[20] M. Hsu, Y. I. Chang, and H. Hsueh. Biomarker selection for medical
diagnosis using the partial area under the roc curve. BMC research
notes, 7(1):1–15, 2014.

[21] W. Jin, T. Derr, H. Liu, Y. Wang, S. Wang, Z. Liu, and J. Tang.
Self-supervised Learning on Graphs: Deep Insights and New Direction.
arXiv, 2020.

[22] Mark MacCarthy. An Examination of the Algorithmic Accountability
Act of 2019. SSRN Electronic Journal, pages 1–10, 2020.

[23] T. Maszczyk and W. Duch. Comparison of shannon, renyi and tsallis
entropy used in decision trees. In Artificial Intelligence and Soft Com-
puting - ICAISC 2008, 9th International Conference, Zakopane, Poland,
June 22-26, 2008, Proceedings, volume 5097 of Lecture Notes in Com-
puter Science, pages 643–651. Springer, 2008.

21



[24] C. E. Metz. Basic principles of roc analysis. Seminars in Nuclear
Medicine, 8(4):283–298, 1978.

[25] M. Mitchell. Why AI is Harder Than We Think. arXiv, 2021.

[26] M. Mitchell and D. C. Krakauer. The Debate Over Understanding in
AI’s Large Language Models. arXiv, 2022.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[28] T. P. Peixoto. Nonparametric bayesian inference of the microcanonical
stochastic block model. Physical Review E, 95(1):012317, 2017.
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Figure 2: Examples of SMs (top) and SAMs (bottom) stratified by class 0 (left) and class
1 (right)
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Missing Values Accuracy Balanced Accuracy
Ionosphere

0% 0.9173789173789174 0.9111111111111111
1% 0.8888888888888888 0.8801587301587301
5% 0.905982905982906 0.8987301587301587
10% 0.9088319088319088 0.900952380952381
50% 0.8831908831908832 0.8722222222222222

Sonar
0% 0.8509615384615384 0.8473576669452958
1% 0.8509615384615384 0.8473576669452958
5% 0.8557692307692307 0.8525123061205535
10% 0.8413461538461539 0.8363982539240271
50% 0.8846153846153846 0.8840902758428532

Wisconsin Breast Cancer
0% 0.9525483304042179 0.9526055705300989
1% 0.9525483304042179 0.9526055705300989
5% 0.9525483304042179 0.9506897098462026
10% 0.9578207381370826 0.958723111886264
50% 0.9525483304042179 0.9516476401881507

Accelerometer
0% 0.6763823529411764 0.6763823529411765
1% 0.6755 0.6755
5% 0.671421568627451 0.671421568627451
10% 0.6655686274509804 0.6655686274509804
50% 0.6218921568627451 0.6218921568627451

HIGGS
0% 0.62736 0.6238901691324948
1% 0.62751 0.624098083884083
5% 0.62357 0.6205104437510285
10% 0.62275 0.620051722051421
50% 0.59962 0.5975619384689126

Air Pressure System Failure
0% 0.92815 0.9157881355932204
1% 0.9280166666666667 0.9152288135593221
5% 0.9280166666666667 0.9167033898305085
10% 0.92905 0.9157542372881355
50% 0.9289333333333334 0.9186440677966101

Table 2: SaNDA results.
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Missing Values Accuracy Balanced Accuracy
Ionosphere

0% 0.9528301886792453 0.9358974358974359
1% 0.9150943396226415 0.895331037122082
5% 0.9056603773584906 0.8878683505549176
10% 0.9056603773584906 0.8932261768082663
50% 0.8207547169811321 0.7885572139303483

Sonar
0% 0.8412698412698413 0.8321428571428571
1% 0.7619047619047619 0.7571428571428571
5% 0.7936507936507936 0.7928571428571429
10% 0.7301587301587301 0.7392857142857143
50% 0.6984126984126984 0.6928571428571428

Wisconsin Breast Cancer
0% 0.9590643274853801 0.9576719576719577
1% 0.9415204678362573 0.9338624338624338
5% 0.9473684210526315 0.9484126984126984
10% 0.9473684210526315 0.9451058201058201
50% 0.9181286549707602 0.9054232804232805

Accelerometer
0% 0.8890522875816993 0.8890515915396984
1% 0.8828431372549019 0.882842709040509
5% 0.86359477124183 0.8635939054043376
10% 0.8401633986928104 0.840161316877716
50% 0.7127450980392157 0.7127476992807777

HIGGS
0% 0.6681 0.6663068303679973
1% 0.6641 0.6619667971684573
5% 0.6508666666666667 0.6486250092041421
10% 0.6446666666666667 0.6426414972197971
50% 0.5959666666666666 0.5935445254284073

Air Pressure System Failure
0% 0.9921666666666666 0.8202597442446821
1% 0.9915 0.8101564587310722
5% 0.9890555555555556 0.7552099275631847
10% 0.9884444444444445 0.7337432523149621
50% 0.9855 0.6785424551283155

Table 3: Random Forest results.
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Figure 3: Experiment results per dataset vs Random Forest.
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Figure 4: Experiment results per dataset vs gcForest.
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Figure 5: Comparison between using probabilities and directed PageRank.

29


